Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0298211, 2024.
Article in English | MEDLINE | ID: mdl-38427624

ABSTRACT

Cyclophilins are a diverse family of peptidyl-prolyl isomerases (PPIases) of importance in a variety of essential cellular functions. We previously reported that the pan-cyclophilin inhibitor drug reconfilstat (CRV431) decreased disease in mice under the western-diet and carbon tetrachloride (CCl4) non-alcoholic steatohepatitis (NASH) model. CRV431 inhibits several cyclophilin isoforms, among which cyclophilin A (CypA) and B (CypB) are the most abundant. It is not known whether simultaneous inhibition of multiple cyclophilin family members is necessary for the observed therapeutic effects or if loss-of-function of one is sufficient. Identifying the responsible isoform(s) would enable future fine-tuning of drug treatments. Features of human liver fibrosis and complete NASH can be reliably replicated in mice by administration of intraperitoneal CCl4 alone or CCl4 in conjunction with high sugar, high cholesterol western diet, respectively. Here we show that while wild-type (WT) and Ppia-/- CypA KO mice develop severe NASH disease features under these models, Ppib-/- CypB KO mice do not, as measured by analysis of picrosirius red and hematoxylin & eosin-stained liver sections and TNFα immuno-stained liver sections. Cyclophilin inhibition is a promising and novel avenue of treatment for diet-induced NASH. In this study, mice without CypB, but not mice without CypA, were significantly protected from the development of the characteristic features of NASH. These data suggest that CypB is necessary for NASH disease progression. Further investigation is necessary to determine whether the specific role of CypB in the endoplasmic reticulum secretory pathway is of significance to its effect on NASH development.


Subject(s)
Cyclophilin A , Non-alcoholic Fatty Liver Disease , Animals , Mice , Cyclophilin A/genetics , Cyclophilins/genetics , Diet, Western , Hematoxylin
2.
Sci Rep ; 13(1): 12747, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550406

ABSTRACT

Microbiomes confer beneficial physiological traits to their host, but microbial diversity is inherently variable, challenging the relationship between microbes and their contribution to host health. Here, we compare the diversity and architectural complexity of the epidermal microbiome from 74 individual whale sharks (Rhincodon typus) across five aggregations globally to determine if network properties may be more indicative of the microbiome-host relationship. On the premise that microbes are expected to exhibit biogeographic patterns globally and that distantly related microbial groups can perform similar functions, we hypothesized that microbiome co-occurrence patterns would occur independently of diversity trends and that keystone microbes would vary across locations. We found that whale shark aggregation was the most important factor in discriminating taxonomic diversity patterns. Further, microbiome network architecture was similar across all aggregations, with degree distributions matching Erdos-Renyi-type networks. The microbiome-derived networks, however, display modularity indicating a definitive microbiome structure on the epidermis of whale sharks. In addition, whale sharks hosted 35 high-quality metagenome assembled genomes (MAGs) of which 25 were present from all sample locations, termed the abundant 'core'. Two main MAG groups formed, defined here as Ecogroup 1 and 2, based on the number of genes present in metabolic pathways, suggesting there are at least two important metabolic niches within the whale shark microbiome. Therefore, while variability in microbiome diversity is high, network structure and core taxa are inherent characteristics of the epidermal microbiome in whale sharks. We suggest the host-microbiome and microbe-microbe interactions that drive the self-assembly of the microbiome help support a functionally redundant abundant core and that network characteristics should be considered when linking microbiomes with host health.


Subject(s)
Microbiota , Sharks , Animals , Sharks/physiology , Epidermis , Epidermal Cells , Microbiota/genetics , Metagenome
3.
Front Microbiol ; 14: 1031711, 2023.
Article in English | MEDLINE | ID: mdl-36937279

ABSTRACT

Marine host-associated microbiomes are affected by a combination of species-specific (e.g., host ancestry, genotype) and habitat-specific features (e.g., environmental physiochemistry and microbial biogeography). The stingray epidermis provides a gradient of characteristics from high dermal denticles coverage with low mucus to reduce dermal denticles and high levels of mucus. Here we investigate the effects of host phylogeny and habitat by comparing the epidermal microbiomes of Myliobatis californica (bat rays) with a mucus rich epidermis, and Urobatis halleri (round rays) with a mucus reduced epidermis from two locations, Los Angeles and San Diego, California (a 150 km distance). We found that host microbiomes are species-specific and distinct from the water column, however composition of M. californica microbiomes showed more variability between individuals compared to U. halleri. The variability in the microbiome of M. californica caused the microbial taxa to be similar across locations, while U. halleri microbiomes were distinct across locations. Despite taxonomic differences, Shannon diversity is the same across the two locations in U. halleri microbiomes suggesting the taxonomic composition are locally adapted, but diversity is maintained by the host. Myliobatis californica and U. halleri microbiomes maintain functional similarity across Los Angeles and San Diego and each ray showed several unique functional genes. Myliobatis californica has a greater relative abundance of RNA Polymerase III-like genes in the microbiome than U. halleri, suggesting specific adaptations to a heavy mucus environment. Construction of Metagenome Assembled Genomes (MAGs) identified novel microbial species within Rhodobacteraceae, Moraxellaceae, Caulobacteraceae, Alcanivoracaceae and Gammaproteobacteria. All MAGs had a high abundance of active RNA processing genes, heavy metal, and antibiotic resistant genes, suggesting the stingray mucus supports high microbial growth rates, which may drive high levels of competition within the microbiomes increasing the antimicrobial properties of the microbes.

4.
Microorganisms ; 10(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36296361

ABSTRACT

Characterizations of shark-microbe systems in wild environments have outlined patterns of species-specific microbiomes; however, whether captivity affects these trends has yet to be determined. We used high-throughput shotgun sequencing to assess the epidermal microbiome belonging to leopard sharks (Triakis semifasciata) in captive (Birch Aquarium, La Jolla California born and held permanently in captivity), semi-captive (held in captivity for <1 year in duration and scheduled for release; Scripps Institute of Oceanography, San Diego, CA, USA) and wild environments (Moss Landing and La Jolla, CA, USA). Here, we report captive environments do not drive epidermal microbiome compositions of T. semifasciata to significantly diverge from wild counterparts as life-long captive sharks maintain a species-specific epidermal microbiome resembling those associated with semi-captive and wild populations. Major taxonomic composition shifts observed were inverse changes of top taxonomic contributors across captive duration, specifically an increase of Pseudoalteromonadaceae and consequent decrease of Pseudomonadaceae relative abundance as T. semifasciata increased duration in captive conditions. Moreover, we show captivity did not lead to significant losses in microbial α-diversity of shark epidermal communities. Finally, we present a novel association between T. semifasciata and the Muricauda genus as Metagenomes associated genomes revealed a consistent relationship across captive, semi-captive, and wild populations. Since changes in microbial communities is often associated with poor health outcomes, our report illustrates that epidermally associated microbes belonging to T. semifasciata are not suffering detrimental impacts from long or short-term captivity. Therefore, conservation programs which house sharks in aquariums are providing a healthy environment for the organisms on display. Our findings also expand on current understanding of shark epidermal microbiomes, explore the effects of ecologically different scenarios on benthic shark microbe associations, and highlight novel associations that are consistent across captive gradients.

5.
Viruses ; 14(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-36146775

ABSTRACT

The epidermal microbiome is a critical element of marine organismal immunity, but the epidermal virome of marine organisms remains largely unexplored. The epidermis of sharks represents a unique viromic ecosystem. Sharks secrete a thin layer of mucus which harbors a diverse microbiome, while their hydrodynamic dermal denticles simultaneously repel environmental microbes. Here, we sampled the virome from the epidermis of three shark species in the family Carcharhinidae: the genetically and morphologically similar Carcharhinus obscurus (n = 6) and Carcharhinus galapagensis (n = 10) and the outgroup Galeocerdo cuvier (n = 15). Virome taxonomy was characterized using shotgun metagenomics and compared with a suite of multivariate analyses. All three sharks retain species-specific but highly similar epidermal viromes dominated by uncharacterized bacteriophages which vary slightly in proportional abundance within and among shark species. Intraspecific variation was lower among C. galapagensis than among C. obscurus and G. cuvier. Using both the annotated and unannotated reads, we were able to determine that the Carcharhinus galapagensis viromes were more similar to that of G. cuvier than they were to that of C. obscurus, suggesting that behavioral niche may be a more prominent driver of virome than host phylogeny.


Subject(s)
Bacteriophages , Diving , Sharks , Virome , Animals , Bacteriophages/genetics , Ecosystem , Epidermis , Metagenomics
6.
Sci Transl Med ; 11(503)2019 07 31.
Article in English | MEDLINE | ID: mdl-31366581

ABSTRACT

The androgen receptor (AR) is a driver of cellular differentiation and prostate cancer development. An extensive body of work has linked these normal and aberrant cellular processes to mRNA transcription; however, the extent to which AR regulates posttranscriptional gene regulation remains unknown. Here, we demonstrate that AR uses the translation machinery to shape the cellular proteome. We show that AR is a negative regulator of protein synthesis and identify an unexpected relationship between AR and the process of translation initiation in vivo. This is mediated through direct transcriptional control of the translation inhibitor 4EBP1. We demonstrate that lowering AR abundance increases the assembly of the eIF4F translation initiation complex, which drives enhanced tumor cell proliferation. Furthermore, we uncover a network of pro-proliferation mRNAs characterized by a guanine-rich cis-regulatory element that is particularly sensitive to eIF4F hyperactivity. Using both genetic and pharmacologic methods, we demonstrate that dissociation of the eIF4F complex reverses the proliferation program, resulting in decreased tumor growth and improved survival in preclinical models. Our findings reveal a druggable nexus that functionally links the processes of mRNA transcription and translation initiation in an emerging class of lethal AR-deficient prostate cancer.


Subject(s)
Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Regulon/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation/genetics , Cell Proliferation/physiology , Humans , In Vitro Techniques , Introns/genetics , Male , Mice , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Regulon/genetics
7.
Eur Biophys J ; 47(1): 89-94, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29080139

ABSTRACT

Protein thermodynamic stability is intricately linked to cellular function, and altered stability can lead to dysfunction and disease. The linear extrapolation model (LEM) is commonly used to obtain protein unfolding free energies ([Formula: see text]) by extrapolation of solvent denaturation data to zero denaturant concentration. However, for some proteins, different denaturants result in non-coincident LEM-derived [Formula: see text] values, raising questions about the inherent assumption that the obtained [Formula: see text] values are intrinsic to the protein. Here, we used single-molecule FRET measurements to better understand such discrepancies by directly probing changes in the dimensions of the protein G B1 domain (GB1), a well-studied protein folding model, upon urea and guanidine hydrochloride denaturation. A comparison of the results for the two denaturants suggests denaturant-specific structural energetics in the GB1 denatured ensemble, revealing a role of the denatured state in the variable thermodynamic behavior of proteins.


Subject(s)
Bacterial Proteins/chemistry , Protein Denaturation/drug effects , Fluorescence Resonance Energy Transfer , Guanidine/pharmacology , Protein Domains , Thermodynamics , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...