Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 109(28): 11172-7, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22745165

ABSTRACT

Some amyloid-forming polypeptides are associated with devastating human diseases and others provide important biological functions. For both, oligomeric intermediates appear during amyloid assembly. Currently we have few tools for characterizing these conformationally labile intermediates and discerning what governs their benign versus toxic states. Here, we examine intermediates in the assembly of a normal, functional amyloid, the prion-determining region of yeast Sup35 (NM). During assembly, NM formed a variety of oligomers with different sizes and conformation-specific antibody reactivities. Earlier oligomers were less compact and reacted with the conformational antibody A11. More mature oligomers were more compact and reacted with conformational antibody OC. We found we could arrest NM in either of these two distinct oligomeric states with small molecules or crosslinking. The A11-reactive oligomers were more hydrophobic (as measured by Nile Red binding) and were highly toxic to neuronal cells, while OC-reactive oligomers were less hydrophobic and were not toxic. The A11 and OC antibodies were originally raised against oligomers of Aß, an amyloidogenic peptide implicated in Alzheimer's disease (AD) that is completely unrelated to NM in sequence. Thus, this natural yeast prion samples two conformational states similar to those sampled by Aß, and when assembly stalls at one of these two states, but not the other, it becomes extremely toxic. Our results have implications for selective pressures operating on the evolution of amyloid folds across a billion years of evolution. Understanding the features that govern such conformational transitions will shed light on human disease and evolution alike.


Subject(s)
Amyloid/chemistry , Alzheimer Disease/metabolism , Anisotropy , Conserved Sequence , Detergents/pharmacology , Fluorescent Dyes/pharmacology , Humans , Kinetics , Models, Molecular , Molecular Conformation , Neurons/metabolism , Peptides/chemistry , Protein Conformation , Protein Structure, Tertiary , Spectrometry, Fluorescence/methods , Tyrosine/chemistry
2.
Science ; 334(6060): 1241-5, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22033521

ABSTRACT

Aß (beta-amyloid peptide) is an important contributor to Alzheimer's disease (AD). We modeled Aß toxicity in yeast by directing the peptide to the secretory pathway. A genome-wide screen for toxicity modifiers identified the yeast homolog of phosphatidylinositol binding clathrin assembly protein (PICALM) and other endocytic factors connected to AD whose relationship to Aß was previously unknown. The factors identified in yeast modified Aß toxicity in glutamatergic neurons of Caenorhabditis elegans and in primary rat cortical neurons. In yeast, Aß impaired the endocytic trafficking of a plasma membrane receptor, which was ameliorated by endocytic pathway factors identified in the yeast screen. Thus, links between Aß, endocytosis, and human AD risk factors can be ascertained with yeast as a model system.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Endocytosis , Peptide Fragments/metabolism , Saccharomyces cerevisiae , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Membrane/metabolism , Cells, Cultured , Clathrin/metabolism , Cytoskeleton/metabolism , Disease Susceptibility , Genetic Association Studies , Genetic Testing , Glutamates/metabolism , Humans , Monomeric Clathrin Assembly Proteins/genetics , Monomeric Clathrin Assembly Proteins/metabolism , Neurons/physiology , Peptide Fragments/chemistry , Peptide Fragments/genetics , Protein Multimerization , Protein Transport , Rats , Risk Factors , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Secretory Pathway
3.
Chembiochem ; 12(7): 1035-8, 2011 May 02.
Article in English | MEDLINE | ID: mdl-21455925

ABSTRACT

We reported recently that certain ß(3) -peptides self-assemble in aqueous solution into discrete bundles of unique structure and defined stoichiometry. The first ß-peptide bundle reported was the octameric Zwit-1F, whose fold is characterized by a well-packed, leucine-rich core and a salt-bridge-rich surface. Close inspection of the Zwit-1F structure revealed four nonideal interhelical salt-bridge interactions whose heavy atom-heavy atom distances were longer than found in natural proteins of known structure. Here we demonstrate that the thermodynamic stability of a ß-peptide bundle can be enhanced by optimizing the length of these four interhelical salt bridges. Combined with previous work on the role of internal packing residues, these results provide another critical step in the "bottom-up" formation of ß-peptide assemblies with defined sizes, reproducible structures, and sophisticated function.


Subject(s)
Peptides/chemistry , Leucine/chemistry , Models, Molecular , Peptides/chemical synthesis , Protein Folding , Protein Stability , Protein Structure, Secondary , Surface Properties , Thermodynamics
4.
EMBO J ; 30(10): 2057-70, 2011 May 18.
Article in English | MEDLINE | ID: mdl-21441896

ABSTRACT

Formation of aberrant protein conformers is a common pathological denominator of different neurodegenerative disorders, such as Alzheimer's disease or prion diseases. Moreover, increasing evidence indicates that soluble oligomers are associated with early pathological alterations and that oligomeric assemblies of different disease-associated proteins may share common structural features. Previous studies revealed that toxic effects of the scrapie prion protein (PrP(Sc)), a ß-sheet-rich isoform of the cellular PrP (PrP(C)), are dependent on neuronal expression of PrP(C). In this study, we demonstrate that PrP(C) has a more general effect in mediating neurotoxic signalling by sensitizing cells to toxic effects of various ß-sheet-rich (ß) conformers of completely different origins, formed by (i) heterologous PrP, (ii) amyloid ß-peptide, (iii) yeast prion proteins or (iv) designed ß-peptides. Toxic signalling via PrP(C) requires the intrinsically disordered N-terminal domain (N-PrP) and the GPI anchor of PrP. We found that the N-terminal domain is important for mediating the interaction of PrP(C) with ß-conformers. Interestingly, a secreted version of N-PrP associated with ß-conformers and antagonized their toxic signalling via PrP(C). Moreover, PrP(C)-mediated toxic signalling could be blocked by an NMDA receptor antagonist or an oligomer-specific antibody. Our study indicates that PrP(C) can mediate toxic signalling of various ß-sheet-rich conformers independent of infectious prion propagation, suggesting a pathophysiological role of the prion protein beyond of prion diseases.


Subject(s)
Membrane Proteins/metabolism , Membrane Proteins/toxicity , PrPC Proteins/metabolism , PrPC Proteins/toxicity , Prion Diseases/pathology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Cell Death , Humans , Membrane Proteins/chemistry , Neurons/drug effects , Neurons/physiology , PrPC Proteins/chemistry , Protein Conformation , Protein Interaction Mapping , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/toxicity
5.
J Am Chem Soc ; 132(11): 3658-9, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-20196598

ABSTRACT

We reported recently that certain beta-peptides self-assemble spontaneously into cooperatively folded bundles whose kinetic and thermodynamic metrics mirror those of natural helix bundle proteins. The structures of four such beta-peptide bundles are known in atomic detail. These structures reveal a solvent-sequestered, hydrophobic core stabilized by a unique arrangement of leucine side chains and backbone methylene groups. Here we report that this hydrophobic core can be re-engineered to contain a fluorous subdomain while maintaining the characteristic beta-peptide bundle fold. Like alpha-helical bundles possessing fluorous cores, fluorous beta-peptide bundles are stabilized relative to hydrocarbon analogues and undergo cold denaturation. Beta-peptide bundles with fluorous cores represent the essential first step in the synthesis of orthogonal protein assemblies that can sequester selectively in an interstitial membrane environment.


Subject(s)
Peptides/chemistry , Circular Dichroism , Crystallography, X-Ray , Kinetics , Models, Molecular , Peptides/chemical synthesis , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Thermodynamics
6.
Chembiochem ; 10(10): 1644-7, 2009 Jul 06.
Article in English | MEDLINE | ID: mdl-19533719

ABSTRACT

Flexibility required: We designed intramolecular bipartite tetracysteine sites in loops of p53 and the beta-sheets of EmGFP. We found that ReAsH binding preferentially favors tetracysteine sites with flexible geometries such as loops; flexibility was assessed by comparing Calpha B-factor values. This information is important for directing successful bipartite tetracysteine site designs.


Subject(s)
Arsenicals/chemistry , Cysteine/chemistry , Oxazines/chemistry , Amino Acid Sequence , Binding Sites , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Protein Binding , Protein Folding , Protein Structure, Tertiary , Tumor Suppressor Protein p53/chemistry
7.
Proc Natl Acad Sci U S A ; 105(48): 18907-12, 2008 Dec 02.
Article in English | MEDLINE | ID: mdl-19028876

ABSTRACT

Efforts to model pancreatic cancer in mice have focused on mimicking genetic changes found in the human disease, particularly the activating KRAS mutations that occur in pancreatic tumors and their putative precursors, pancreatic intraepithelial neoplasia (PanIN). Although activated mouse Kras mutations induce PanIN lesions similar to those of human, only a small minority of cells that express mutant Kras go on to form PanINs. The basis for this selective response is unknown, and it is similarly unknown what cell types in the mature pancreas actually contribute to PanINs. One clue comes from the fact that PanINs, unlike most cells in the adult pancreas, exhibit active Notch signaling. We hypothesize that Notch, which inhibits differentiation in the embryonic pancreas, contributes to PanIN formation by abrogating the normal differentiation program of tumor-initiating cells. Through conditional expression in the mouse pancreas, we find dramatic synergy between activated Notch and Kras in inducing PanIN formation. Furthermore, we find that Kras activation in mature acinar cells induces PanIN lesions identical to those seen upon ubiquitous Kras activation, and that Notch promotes both initiation and dysplastic progression of these acinar-derived PanINs, albeit short of invasive adenocarcinoma. At the cellular level, Notch/Kras coactivation promotes rapid reprogramming of acinar cells to a duct-like phenotype, providing an explanation for how a characteristically ductal tumor can arise from nonductal acinar cells.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Ducts/cytology , Pancreatic Ducts/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, Notch/metabolism , ras Proteins/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Estrogen Antagonists/metabolism , Female , Humans , Mice , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Pregnancy , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , Receptors, Notch/genetics , Signal Transduction/physiology , Tamoxifen/metabolism , Transgenes , ras Proteins/genetics
9.
J Am Chem Soc ; 129(47): 14746-51, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-17985897

ABSTRACT

Proteins composed of alpha-amino acids are essential components of the machinery required for life. Stanley Miller's renowned electric discharge experiment provided evidence that an environment of methane, ammonia, water, and hydrogen was sufficient to produce alpha-amino acids. This reaction also generated other potential protein building blocks such as the beta-amino acid beta-glycine (also known as beta-alanine); however, the potential of these species to form complex ordered structures that support functional roles has not been widely investigated. In this report we apply a variety of biophysical techniques, including circular dichroism, differential scanning calorimetry, analytical ultracentrifugation, NMR and X-ray crystallography, to characterize the oligomerization of two 12-mer beta3-peptides, Acid-1Y and Acid-1Y*. Like the previously reported beta3-peptide Zwit-1F, Acid-1Y and Acid-1Y* fold spontaneously into discrete, octameric quaternary structures that we refer to as beta-peptide bundles. Surprisingly, the Acid-1Y octamer is more stable than the analogous Zwit-1F octamer, in terms of both its thermodynamics and kinetics of unfolding. The structure of Acid-1Y, reported here to 2.3 A resolution, provides intriguing hypotheses for the increase in stability. To summarize, in this work we provide additional evidence that nonnatural beta-peptide oligomers can assemble into cooperatively folded structures with potential application in enzyme design, and as medical tools and nanomaterials. Furthermore, these studies suggest that nature's selection of alpha-amino acid precursors was not based solely on their ability to assemble into stable oligomeric structures.


Subject(s)
Peptides/chemistry , Biophysical Phenomena , Biophysics , Calorimetry, Differential Scanning , Circular Dichroism , Hydrogen/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Structure , Solutions , Spectrometry, Fluorescence , Ultracentrifugation
10.
EMBO J ; 26(14): 3494-505, 2007 Jul 25.
Article in English | MEDLINE | ID: mdl-17611604

ABSTRACT

Replicative DNA polymerases (DNAPs) move along template DNA in a processive manner. The structural basis of the mechanism of translocation has been better studied in the A-family of polymerases than in the B-family of replicative polymerases. To address this issue, we have determined the X-ray crystal structures of phi29 DNAP, a member of the protein-primed subgroup of the B-family of polymerases, complexed with primer-template DNA in the presence or absence of the incoming nucleoside triphosphate, the pre- and post-translocated states, respectively. Comparison of these structures reveals a mechanism of translocation that appears to be facilitated by the coordinated movement of two conserved tyrosine residues into the insertion site. This differs from the mechanism employed by the A-family polymerases, in which a conserved tyrosine moves into the templating and insertion sites during the translocation step. Polymerases from the two families also interact with downstream single-stranded template DNA in very different ways.


Subject(s)
Bacillus Phages/enzymology , DNA-Directed DNA Polymerase/chemistry , Amino Acid Motifs , Crystallography, X-Ray , DNA, Viral/metabolism , Exonucleases/metabolism , Models, Molecular , Protein Transport , Substrate Specificity , Templates, Genetic , Water/metabolism
11.
J Am Chem Soc ; 128(51): 16506-7, 2006 Dec 27.
Article in English | MEDLINE | ID: mdl-17177392

ABSTRACT

There is considerable current interest in the design of encodable molecules that regulate intracellular protein circuitry and/or activity, ideally with a high level of specificity. Src homology 3 (SH3) domains are ubiquitous components of multidomain signaling proteins, including many kinases, and are attractive drug targets because of the important role their interactions play in diseases as diverse as cancer, osteoporosis, and inflammation. Here we describe a set of miniature proteins that recognize distinct SH3 domains from Src family kinases with high affinity. Three of these molecules discriminate effectively between the SH3 domains of Src and Fyn, which are expressed ubiquitously, and two of these three activate Hck kinase with potencies that rival HIV Nef, one of the most potent kinase activators known. These results suggest that miniature proteins represent a viable, encodable strategy for selective activation of Src family kinases in a variety of cell types.


Subject(s)
Proteins/chemistry , src-Family Kinases/chemistry , Amino Acid Sequence , Enzyme Activation , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Peptides/chemistry , Protein Conformation , Protein Structure, Secondary , Sensitivity and Specificity , Structure-Activity Relationship , src Homology Domains
12.
Biochemistry ; 43(44): 13883-91, 2004 Nov 09.
Article in English | MEDLINE | ID: mdl-15518536

ABSTRACT

Ornithine cyclodeaminase catalyzes the conversion of L-ornithine to L-proline by an NAD(+)-dependent hydride transfer reaction that culminates in ammonia elimination. Phylogenetic comparisons of amino acid sequences revealed that the enzyme belongs to the mu-crystallin protein family whose three-dimensional fold has not been reported. Here we describe the crystal structure of ornithine cyclodeaminase in complex with NADH, refined to 1.80 A resolution. The enzyme consists of a homodimeric fold whose subunits comprise two functional regions: (i) a novel substrate-binding domain whose antiparallel beta-strands form a 14-stranded barrel at the oligomeric interface and (ii) a canonical Rossmann fold that interacts with a single dinucleotide positioned for re hydride transfer. The adenosyl moiety of the cofactor resides in a solvent-exposed crevice on the protein surface and makes contact with a "domain-swapped"-like coil-helix module originating from the dyad-related molecule. Diffraction data were also collected to 1.60 A resolution on crystals grown in the presence of l-ornithine. The structure revealed that the substrate carboxyl group interacts with the side chains of Arg45, Lys69, and Arg112. In addition, the ammonia leaving group hydrogen bonds to the side chain of Asp228 and the site of hydride transfer is 3.8 A from C4 of the nicotinamide. The absence of an appropriately positioned water suggested that a previously proposed mechanism that calls for hydrolytic elimination of the imino intermediate must be reconsidered. A more parsimonious description of the chemical mechanism is proposed and discussed in relation to the structure and function of mu-crystallins.


Subject(s)
Ammonia-Lyases/chemistry , Ammonia-Lyases/metabolism , Crystallins/chemistry , Crystallins/metabolism , Pseudomonas putida/enzymology , Amino Acid Motifs , Amino Acid Sequence , Animals , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Dimerization , Dinucleotide Repeats , Humans , Models, Molecular , Molecular Sequence Data , Multigene Family , NAD/chemistry , Ornithine/chemistry , Protein Binding , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Structure-Activity Relationship , Substrate Specificity , mu-Crystallins
SELECTION OF CITATIONS
SEARCH DETAIL
...