Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
PLoS Med ; 21(5): e1004364, 2024 May.
Article in English | MEDLINE | ID: mdl-38743771

ABSTRACT

BACKGROUND: The regional disparity of heatwave-related mortality over a long period has not been sufficiently assessed across the globe, impeding the localisation of adaptation planning and risk management towards climate change. We quantified the global mortality burden associated with heatwaves at a spatial resolution of 0.5°×0.5° and the temporal change from 1990 to 2019. METHODS AND FINDINGS: We collected data on daily deaths and temperature from 750 locations of 43 countries or regions, and 5 meta-predictors in 0.5°×0.5° resolution across the world. Heatwaves were defined as location-specific daily mean temperature ≥95th percentiles of year-round temperature range with duration ≥2 days. We first estimated the location-specific heatwave-mortality association. Secondly, a multivariate meta-regression was fitted between location-specific associations and 5 meta-predictors, which was in the third stage used with grid cell-specific meta-predictors to predict grid cell-specific association. Heatwave-related excess deaths were calculated for each grid and aggregated. During 1990 to 2019, 0.94% (95% CI: 0.68-1.19) of deaths [i.e., 153,078 cases (95% eCI: 109,950-194,227)] per warm season were estimated to be from heatwaves, accounting for 236 (95% eCI: 170-300) deaths per 10 million residents. The ratio between heatwave-related excess deaths and all premature deaths per warm season remained relatively unchanged over the 30 years, while the number of heatwave-related excess deaths per 10 million residents per warm season declined by 7.2% per decade in comparison to the 30-year average. Locations with the highest heatwave-related death ratio and rate were in Southern and Eastern Europe or areas had polar and alpine climates, and/or their residents had high incomes. The temporal change of heatwave-related mortality burden showed geographic disparities, such that locations with tropical climate or low incomes were observed with the greatest decline. The main limitation of this study was the lack of data from certain regions, e.g., Arabian Peninsula and South Asia. CONCLUSIONS: Heatwaves were associated with substantial mortality burden that varied spatiotemporally over the globe in the past 30 years. The findings indicate the potential benefit of governmental actions to enhance health sector adaptation and resilience, accounting for inequalities across communities.


Subject(s)
Climate Change , Extreme Heat , Humans , Extreme Heat/adverse effects , Global Health/trends , Hot Temperature/adverse effects , Mortality/trends , Seasons
2.
Lancet Planet Health ; 8(2): e108-e116, 2024 02.
Article in English | MEDLINE | ID: mdl-38331527

ABSTRACT

BACKGROUND: Exposure to cold spells is associated with mortality. However, little is known about the global mortality burden of cold spells. METHODS: A three-stage meta-analytical method was used to estimate the global mortality burden associated with cold spells by means of a time series dataset of 1960 locations across 59 countries (or regions). First, we fitted the location-specific, cold spell-related mortality associations using a quasi-Poisson regression with a distributed lag non-linear model with a lag period of up to 21 days. Second, we built a multivariate meta-regression model between location-specific associations and seven predictors. Finally, we predicted the global grid-specific cold spell-related mortality associations during 2000-19 using the fitted meta-regression model and the yearly grid-specific meta-predictors. We calculated the annual excess deaths, excess death ratio (excess deaths per 1000 deaths), and excess death rate (excess deaths per 100 000 population) due to cold spells for each grid across the world. FINDINGS: Globally, 205 932 (95% empirical CI [eCI] 162 692-250 337) excess deaths, representing 3·81 (95% eCI 2·93-4·71) excess deaths per 1000 deaths (excess death ratio), and 3·03 (2·33-3·75) excess deaths per 100 000 population (excess death rate) were associated with cold spells per year between 2000 and 2019. The annual average global excess death ratio in 2016-19 increased by 0·12 percentage points and the excess death rate in 2016-19 increased by 0·18 percentage points, compared with those in 2000-03. The mortality burden varied geographically. The excess death ratio and rate were highest in Europe, whereas these indicators were lowest in Africa. Temperate climates had higher excess death ratio and rate associated with cold spells than other climate zones. INTERPRETATION: Cold spells are associated with substantial mortality burden around the world with geographically varying patterns. Although the number of cold spells has on average been decreasing since year 2000, the public health threat of cold spells remains substantial. The findings indicate an urgency of taking local and regional measures to protect the public from the mortality burdens of cold spells. FUNDING: Australian Research Council, Australian National Health and Medical Research Council, EU's Horizon 2020 Project Exhaustion.


Subject(s)
Climate , Public Health , Australia , Europe , Adaptor Proteins, Signal Transducing
3.
Lancet Planet Health ; 7(8): e694-e705, 2023 08.
Article in English | MEDLINE | ID: mdl-37558350

ABSTRACT

BACKGROUND: The global spatiotemporal pattern of mortality risk and burden attributable to tropical cyclones is unclear. We aimed to evaluate the global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019. METHODS: The wind speed associated with cyclones from 1980 to 2019 was estimated globally through a parametric wind field model at a grid resolution of 0·5°â€ˆ× 0·5°. A total of 341 locations with daily mortality and temperature data from 14 countries that experienced at least one tropical cyclone day (a day with maximum sustained wind speed associated with cyclones ≥17·5 m/s) during the study period were included. A conditional quasi-Poisson regression with distributed lag non-linear model was applied to assess the tropical cyclone-mortality association. A meta-regression model was fitted to evaluate potential contributing factors and estimate grid cell-specific tropical cyclone effects. FINDINGS: Tropical cyclone exposure was associated with an overall 6% (95% CI 4-8) increase in mortality in the first 2 weeks following exposure. Globally, an estimate of 97 430 excess deaths (95% empirical CI [eCI] 71 651-126 438) per decade were observed over the 2 weeks following exposure to tropical cyclones, accounting for 20·7 (95% eCI 15·2-26·9) excess deaths per 100 000 residents (excess death rate) and 3·3 (95% eCI 2·4-4·3) excess deaths per 1000 deaths (excess death ratio) over 1980-2019. The mortality burden exhibited substantial temporal and spatial variation. East Asia and south Asia had the highest number of excess deaths during 1980-2019: 28 744 (95% eCI 16 863-42 188) and 27 267 (21 157-34 058) excess deaths per decade, respectively. In contrast, the regions with the highest excess death ratios and rates were southeast Asia and Latin America and the Caribbean. From 1980-99 to 2000-19, marked increases in tropical cyclone-related excess death numbers were observed globally, especially for Latin America and the Caribbean and south Asia. Grid cell-level and country-level results revealed further heterogeneous spatiotemporal patterns such as the high and increasing tropical cyclone-related mortality burden in Caribbean countries or regions. INTERPRETATION: Globally, short-term exposure to tropical cyclones was associated with a significant mortality burden, with highly heterogeneous spatiotemporal patterns. In-depth exploration of tropical cyclone epidemiology for those countries and regions estimated to have the highest and increasing tropical cyclone-related mortality burdens is urgently needed to help inform the development of targeted actions against the increasing adverse health impacts of tropical cyclones under a changing climate. FUNDING: Australian Research Council and Australian National Health and Medical Research Council.


Subject(s)
Cyclonic Storms , Australia , Climate , Temperature , Wind
4.
Innovation (Camb) ; 3(2): 100225, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35340394

ABSTRACT

Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days' minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: -0.33 to 1.69), 1.34% (95% CI: -0.14 to 2.73), 1.99% (95% CI: 0.29-3.57), and 2.73% (95% CI: 0.76-4.50) of total deaths for Q1-Q4 (first quartile-fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25-9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: -0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.

5.
Environ Epidemiol ; 5(5): e169, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34934890

ABSTRACT

BACKGROUND: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. METHODS: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. RESULTS: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. CONCLUSIONS: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.

6.
Lancet Planet Health ; 4(11): e512-e521, 2020 11.
Article in English | MEDLINE | ID: mdl-33159878

ABSTRACT

BACKGROUND: Various retrospective studies have reported on the increase of mortality risk due to higher diurnal temperature range (DTR). This study projects the effect of DTR on future mortality across 445 communities in 20 countries and regions. METHODS: DTR-related mortality risk was estimated on the basis of the historical daily time-series of mortality and weather factors from Jan 1, 1985, to Dec 31, 2015, with data for 445 communities across 20 countries and regions, from the Multi-Country Multi-City Collaborative Research Network. We obtained daily projected temperature series associated with four climate change scenarios, using the four representative concentration pathways (RCPs) described by the Intergovernmental Panel on Climate Change, from the lowest to the highest emission scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). Excess deaths attributable to the DTR during the current (1985-2015) and future (2020-99) periods were projected using daily DTR series under the four scenarios. Future excess deaths were calculated on the basis of assumptions that warmer long-term average temperatures affect or do not affect the DTR-related mortality risk. FINDINGS: The time-series analyses results showed that DTR was associated with excess mortality. Under the unmitigated climate change scenario (RCP 8.5), the future average DTR is projected to increase in most countries and regions (by -0·4 to 1·6°C), particularly in the USA, south-central Europe, Mexico, and South Africa. The excess deaths currently attributable to DTR were estimated to be 0·2-7·4%. Furthermore, the DTR-related mortality risk increased as the long-term average temperature increased; in the linear mixed model with the assumption of an interactive effect with long-term average temperature, we estimated 0·05% additional DTR mortality risk per 1°C increase in average temperature. Based on the interaction with long-term average temperature, the DTR-related excess deaths are projected to increase in all countries or regions by 1·4-10·3% in 2090-99. INTERPRETATION: This study suggests that globally, DTR-related excess mortality might increase under climate change, and this increasing pattern is likely to vary between countries and regions. Considering climatic changes, our findings could contribute to public health interventions aimed at reducing the impact of DTR on human health. FUNDING: Korea Ministry of Environment.


Subject(s)
Climate Change/mortality , Mortality/trends , Temperature , Cities , Cold Temperature/adverse effects , Global Health , Hot Temperature/adverse effects , Humans , Linear Models , Retrospective Studies , Risk Factors , Seasons , Time Factors
8.
Environ Health Perspect ; 127(9): 97007, 2019 09.
Article in English | MEDLINE | ID: mdl-31553655

ABSTRACT

BACKGROUND: There is strong experimental evidence that physiologic stress from high temperatures is greater if humidity is higher. However, heat indices developed to allow for this have not consistently predicted mortality better than dry-bulb temperature. OBJECTIVES: We aimed to clarify the potential contribution of humidity an addition to temperature in predicting daily mortality in summer by using a large multicountry dataset. METHODS: In 445 cities in 24 countries, we fit a time-series regression model for summer mortality with a distributed lag nonlinear model (DLNM) for temperature (up to lag 3) and supplemented this with a range of terms for relative humidity (RH) and its interaction with temperature. City-specific associations were summarized using meta-analytic techniques. RESULTS: Adding a linear term for RH to the temperature term improved fit slightly, with an increase of 23% in RH (the 99th percentile anomaly) associated with a 1.1% [95% confidence interval (CI): 0.8, 1.3] decrease in mortality. Allowing curvature in the RH term or adding terms for interaction of RH with temperature did not improve the model fit. The humidity-related decreased risk was made up of a positive coefficient at lag 0 outweighed by negative coefficients at lags of 1-3 d. Key results were broadly robust to small model changes and replacing RH with absolute measures of humidity. Replacing temperature with apparent temperature, a metric combining humidity and temperature, reduced goodness of fit slightly. DISCUSSION: The absence of a positive association of humidity with mortality in summer in this large multinational study is counter to expectations from physiologic studies, though consistent with previous epidemiologic studies finding little evidence for improved prediction by heat indices. The result that there was a small negative average association of humidity with mortality should be interpreted cautiously; the lag structure has unclear interpretation and suggests the need for future work to clarify. https://doi.org/10.1289/EHP5430.


Subject(s)
Environmental Exposure/statistics & numerical data , Hot Temperature , Humidity , Mortality/trends , Cities , Humans , Nonlinear Dynamics , Seasons
9.
Environ Int ; 131: 105027, 2019 10.
Article in English | MEDLINE | ID: mdl-31351381

ABSTRACT

An increase in the global health burden of temperature was projected for 459 locations in 28 countries worldwide under four representative concentration pathway scenarios until 2099. We determined that the amount of temperature increase for each 100 ppm increase in global CO2 concentrations is nearly constant, regardless of climate scenarios. The overall average temperature increase during 2010-2099 is largest in Canada (1.16 °C/100 ppm) and Finland (1.14 °C/100 ppm), while it is smallest in Ireland (0.62 °C/100 ppm) and Argentina (0.63 °C/100 ppm). In addition, for each 1 °C temperature increase, the amount of excess mortality is increased largely in tropical countries such as Vietnam (10.34%p/°C) and the Philippines (8.18%p/°C), while it is decreased in Ireland (-0.92%p/°C) and Australia (-0.32%p/°C). To understand the regional variability in temperature increase and mortality, we performed a regression-based modeling. We observed that the projected temperature increase is highly correlated with daily temperature range at the location and vulnerability to temperature increase is affected by health expenditure, and proportions of obese and elderly population.


Subject(s)
Global Health , Global Warming , Forecasting , Humans , Mortality/trends , Temperature
10.
Clim Change ; 150(3-4): 391-402, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30405277

ABSTRACT

The Paris Agreement binds all nations to undertake ambitious efforts to combat climate change, with the commitment to Bhold warming well below 2 °C in global mean temperature (GMT), relative to pre-industrial levels, and to pursue efforts to limit warming to 1.5 °C". The 1.5 °C limit constitutes an ambitious goal for which greater evidence on its benefits for health would help guide policy and potentially increase the motivation for action. Here we contribute to this gap with an assessment on the potential health benefits, in terms of reductions in temperature-related mortality, derived from the compliance to the agreed temperature targets, compared to more extreme warming scenarios. We performed a multi-region analysis in 451 locations in 23 countries with different climate zones, and evaluated changes in heat and cold-related mortality under scenarios consistent with the Paris Agreement targets (1.5 and 2 °C) and more extreme GMT increases (3 and 4 °C), and under the assumption of no changes in demographic distribution and vulnerability. Our results suggest that limiting warming below 2 °C could prevent large increases in temperature-related mortality in most regions worldwide. The comparison between 1.5 and 2 °C is more complex and characterized by higher uncertainty, with geographical differences that indicate potential benefits limited to areas located in warmer climates, where direct climate change impacts will be more discernible.

11.
PLoS Med ; 15(7): e1002629, 2018 07.
Article in English | MEDLINE | ID: mdl-30063714

ABSTRACT

BACKGROUND: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited. METHODS AND FINDINGS: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave-mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971-2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031-2080 compared with 1971-2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections. CONCLUSIONS: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change.


Subject(s)
Climate Change/mortality , Greenhouse Effect/mortality , Hot Temperature/adverse effects , Cause of Death , Environmental Exposure/adverse effects , Greenhouse Effect/prevention & control , Greenhouse Gases/adverse effects , Humans , Risk Assessment , Risk Factors , Time Factors
12.
Environ Int ; 111: 239-246, 2018 02.
Article in English | MEDLINE | ID: mdl-29272855

ABSTRACT

BACKGROUND: Temporal variation of temperature-health associations depends on the combination of two pathways: pure adaptation to increasingly warmer temperatures due to climate change, and other attenuation mechanisms due to non-climate factors such as infrastructural changes and improved health care. Disentangling these pathways is critical for assessing climate change impacts and for planning public health and climate policies. We present evidence on this topic by assessing temporal trends in cold- and heat-attributable mortality risks in a multi-country investigation. METHODS: Trends in country-specific attributable mortality fractions (AFs) for cold and heat (defined as below/above minimum mortality temperature, respectively) in 305 locations within 10 countries (1985-2012) were estimated using a two-stage time-series design with time-varying distributed lag non-linear models. To separate the contribution of pure adaptation to increasing temperatures and active changes in susceptibility (non-climate driven mechanisms) to heat and cold, we compared observed yearly-AFs with those predicted in two counterfactual scenarios: trends driven by either (1) changes in exposure-response function (assuming a constant temperature distribution), (2) or changes in temperature distribution (assuming constant exposure-response relationships). This comparison provides insights about the potential mechanisms and pace of adaptation in each population. RESULTS: Heat-related AFs decreased in all countries (ranging from 0.45-1.66% to 0.15-0.93%, in the first and last 5-year periods, respectively) except in Australia, Ireland and UK. Different patterns were found for cold (where AFs ranged from 5.57-15.43% to 2.16-8.91%), showing either decreasing (Brazil, Japan, Spain, Australia and Ireland), increasing (USA), or stable trends (Canada, South Korea and UK). Heat-AF trends were mostly driven by changes in exposure-response associations due to modified susceptibility to temperature, whereas no clear patterns were observed for cold. CONCLUSIONS: Our findings suggest a decrease in heat-mortality impacts over the past decades, well beyond those expected from a pure adaptation to changes in temperature due to the observed warming. This indicates that there is scope for the development of public health strategies to mitigate heat-related climate change impacts. In contrast, no clear conclusions were found for cold. Further investigations should focus on identification of factors defining these changes in susceptibility.


Subject(s)
Acclimatization , Climate Change , Cold Temperature/adverse effects , Hot Temperature/adverse effects , Mortality/trends , Adaptation, Physiological , Australia , Brazil , Canada , Humans , Ireland , Japan , Public Health , Republic of Korea , Risk Factors , Social Perception , Spain , Temperature
13.
Environ Int ; 110: 123-130, 2018 01.
Article in English | MEDLINE | ID: mdl-29089167

ABSTRACT

Although diurnal temperature range (DTR) is a key index of climate change, few studies have reported the health burden of DTR and its temporal changes at a multi-country scale. Therefore, we assessed the attributable risk fraction of DTR on mortality and its temporal variations in a multi-country data set. We collected time-series data covering mortality and weather variables from 308 cities in 10 countries from 1972 to 2013. The temporal change in DTR-related mortality was estimated for each city with a time-varying distributed lag model. Estimates for each city were pooled using a multivariate meta-analysis. The results showed that the attributable fraction of total mortality to DTR was 2.5% (95% eCI: 2.3-2.7%) over the entire study period. In all countries, the attributable fraction increased from 2.4% (2.1-2.7%) to 2.7% (2.4-2.9%) between the first and last study years. This study found that DTR has significantly contributed to mortality in all the countries studied, and this attributable fraction has significantly increased over time in the USA, the UK, Spain, and South Korea. Therefore, because the health burden of DTR is not likely to reduce in the near future, countermeasures are needed to alleviate its impact on human health.


Subject(s)
Cardiovascular Diseases/mortality , Climate Change , Temperature , Cities , Global Health , Humans , Mortality/trends , Risk Factors
14.
Lancet Planet Health ; 1(9): e360-e367, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29276803

ABSTRACT

BACKGROUND: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. METHODS: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes. FINDINGS: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (-3·0 to 9·3) in Central America to 12·7% (-4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet. INTERPRETATION: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks. FUNDING: UK Medical Research Council.

15.
Environ Health Perspect ; 125(10): 107009, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29084393

ABSTRACT

BACKGROUND: In many places, daily mortality has been shown to increase after days with particularly high or low temperatures, but such daily time-series studies cannot identify whether such increases reflect substantial life shortening or short-term displacement of deaths (harvesting). OBJECTIVES: To clarify this issue, we estimated the association between annual mortality and annual summaries of heat and cold in 278 locations from 12 countries. METHODS: Indices of annual heat and cold were used as predictors in regressions of annual mortality in each location, allowing for trends over time and clustering of annual count anomalies by country and pooling estimates using meta-regression. We used two indices of annual heat and cold based on preliminary standard daily analyses: a) mean annual degrees above/below minimum mortality temperature (MMT), and b) estimated fractions of deaths attributed to heat and cold. The first index was simpler and matched previous related research; the second was added because it allowed the interpretation that coefficients equal to 0 and 1 are consistent with none (0) or all (1) of the deaths attributable in daily analyses being displaced by at least 1 y. RESULTS: On average, regression coefficients of annual mortality on heat and cold mean degrees were 1.7% [95% confidence interval (CI): 0.3, 3.1] and 1.1% (95% CI: 0.6, 1.6) per degree, respectively, and daily attributable fractions were 0.8 (95% CI: 0.2, 1.3) and 1.1 (95% CI: 0.9, 1.4). The proximity of the latter coefficients to 1.0 provides evidence that most deaths found attributable to heat and cold in daily analyses were brought forward by at least 1 y. Estimates were broadly robust to alternative model assumptions. CONCLUSIONS: These results provide strong evidence that most deaths associated in daily analyses with heat and cold are displaced by at least 1 y. https://doi.org/10.1289/EHP1756.


Subject(s)
Mortality/trends , Cold Temperature , Hot Temperature , Humans
16.
Environ Health Perspect ; 125(8): 087006, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28886602

ABSTRACT

BACKGROUND: Few studies have examined variation in the associations between heat waves and mortality in an international context. OBJECTIVES: We aimed to systematically examine the impacts of heat waves on mortality with lag effects internationally. METHODS: We collected daily data of temperature and mortality from 400 communities in 18 countries/regions and defined 12 types of heat waves by combining community-specific daily mean temperature ≥90th, 92.5th, 95th, and 97.5th percentiles of temperature with duration ≥2, 3, and 4 d. We used time-series analyses to estimate the community-specific heat wave-mortality relation over lags of 0-10 d. Then, we applied meta-analysis to pool heat wave effects at the country level for cumulative and lag effects for each type of heat wave definition. RESULTS: Heat waves of all definitions had significant cumulative associations with mortality in all countries, but varied by community. The higher the temperature threshold used to define heat waves, the higher heat wave associations on mortality. However, heat wave duration did not modify the impacts. The association between heat waves and mortality appeared acutely and lasted for 3 and 4 d. Heat waves had higher associations with mortality in moderate cold and moderate hot areas than cold and hot areas. There were no added effects of heat waves on mortality in all countries/regions, except for Brazil, Moldova, and Taiwan. Heat waves defined by daily mean and maximum temperatures produced similar heat wave-mortality associations, but not daily minimum temperature. CONCLUSIONS: Results indicate that high temperatures create a substantial health burden, and effects of high temperatures over consecutive days are similar to what would be experienced if high temperature days occurred independently. People living in moderate cold and moderate hot areas are more sensitive to heat waves than those living in cold and hot areas. Daily mean and maximum temperatures had similar ability to define heat waves rather than minimum temperature. https://doi.org/10.1289/EHP1026.


Subject(s)
Extreme Heat , Mortality/trends , Brazil , Humans , Taiwan
17.
Vasc Endovascular Surg ; 50(5): 317-20, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27206744

ABSTRACT

OBJECTIVES: The initial survival advantage seen with endovascular aneurysm repair (EVAR) over open repair does not persist in the long term. Pulse wave velocity (PWV) is a measure of arterial stiffness, and increased PWV is an independent risk factor for increased cardiovascular morbidity and mortality. This prospective comparative pilot study examined the effect of implantation of an aortic graft on PWV in patients undergoing open or endovascular aortic aneurysm repair. PATIENTS AND METHODS: Thirty-four patients (15 open and 19 EVAR) were recruited. Patient demographics were similar in both the groups. Pulse wave velocity was calculated for all patients preoperatively and postoperatively using a standardized technique on a Philips IU22 Vascular Ultrasound machine and the results compared. RESULTS: An increase in mean PWV following EVAR was demonstrated. The mean postprocedure PWV of 9.7 (± 4.5) cm/sec detected in the open group was significantly lower than the elevated 12.2 (± 4.5) cm/sec detected in the EVAR group. The surgical group also demonstrated a mean decrease of 0.2 (± 4.9) cm/sec in PWV following open repair compared to a mean increase of 3.3 (± 3.7) cm/sec in the EVAR group. CONCLUSION: EVAR patients have a significantly higher postoperative PWV measurement than those undergoing open abdominal aortic aneurysm repair. Patients who have undergone EVAR may be at a higher risk of cardiovascular morbidity in the long term. A larger scale study with a longer prospective follow-up is required.


Subject(s)
Aorta, Abdominal/surgery , Aortic Aneurysm, Abdominal/surgery , Blood Vessel Prosthesis Implantation/adverse effects , Endovascular Procedures/adverse effects , Vascular Stiffness , Aged , Aorta, Abdominal/diagnostic imaging , Aorta, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/physiopathology , Blood Vessel Prosthesis , Blood Vessel Prosthesis Implantation/instrumentation , Endovascular Procedures/instrumentation , Female , Humans , Male , Pilot Projects , Prospective Studies , Pulse Wave Analysis , Risk Factors , Stents , Time Factors , Treatment Outcome , Ultrasonography, Doppler
18.
Angiology ; 67(4): 346-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26056393

ABSTRACT

Screening for concomitant atherosclerotic disease is important in cardiovascular risk reduction. This study assessed the prevalence of carotid artery disease (CAD) and peripheral arterial disease (PAD) in patients with known abdominal aortic aneurysms (AAAs). All patients with AAA attending the vascular laboratory between the January 1, 2007, and December 31, 2009, were eligible for a carotid ultrasound and measurement of ankle brachial indices. A total of 389 (305 males) patients were identified on the AAA surveillance program with a mean (±standard deviation) age of 76 (±8) years. The mean age of the males was 75.4 (±7.8) years, and the mean age of the females was 77 (±11) years. A total of 332 patients were assessed for CAD, and 101 (30.4%) of those were found to have significant disease. A total of 289 patients were assessed for PAD of which 131 (45.3%) were found to have PAD at rest, and 289 patients were assessed for both and 59 (20.4%) patients had significant CAD + PAD. Patients with AAAs are at high risk of other atherosclerotic disorders, and, therefore, they should receive intensive medical optimization.


Subject(s)
Aortic Aneurysm, Abdominal/diagnosis , Carotid Artery Diseases/diagnosis , Peripheral Arterial Disease/diagnosis , Adult , Aged , Aged, 80 and over , Ankle Brachial Index/methods , Aortic Aneurysm, Abdominal/complications , Aortic Aneurysm, Abdominal/epidemiology , Carotid Artery Diseases/complications , Carotid Artery Diseases/epidemiology , Female , Humans , Male , Middle Aged , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/epidemiology , Prevalence , Risk Factors
19.
Environ Health ; 13: 104, 2014 Dec 06.
Article in English | MEDLINE | ID: mdl-25480672

ABSTRACT

BACKGROUND: This study aimed to assess the relationship between cold temperature and daily mortality in the Republic of Ireland (ROI) and Northern Ireland (NI), and to explore any differences in the population responses between the two jurisdictions. METHODS: A time-stratified case-crossover approach was used to examine this relationship in two adult national populations, between 1984 and 2007. Daily mortality risk was examined in association with exposure to daily maximum temperatures on the same day and up to 6 weeks preceding death, during the winter (December-February) and an extended cold period (October-March), using distributed lag models. Model stratification by age and gender assessed for modification of the cold weather-mortality relationship. RESULTS: In the ROI, the impact of cold weather in winter persisted up to 35 days, with a cumulative mortality increase for all-causes of 6.4% (95% CI = 4.8%-7.9%) in relation to every 1°C drop in daily maximum temperature, similar increases for cardiovascular disease (CVD) and stroke, and twice as much for respiratory causes. In NI, these associations were less pronounced for CVD causes, and overall extended up to 28 days. Effects of cold weather on mortality increased with age in both jurisdictions, and some suggestive gender differences were observed. CONCLUSIONS: The study findings indicated strong cold weather-mortality associations in the island of Ireland; these effects were less persistent, and for CVD mortality, smaller in NI than in the ROI. Together with suggestive differences in associations by age and gender between the two Irish jurisdictions, the findings suggest potential contribution of underlying societal differences, and require further exploration. The evidence provided here will hope to contribute to the current efforts to modify fuel policy and reduce winter mortality in Ireland.


Subject(s)
Cardiovascular Diseases/mortality , Cold Temperature/adverse effects , Mortality/trends , Respiratory Tract Diseases/mortality , Adolescent , Adult , Aged , Female , Humans , Ireland/epidemiology , Male , Middle Aged , Northern Ireland/epidemiology , Seasons , Young Adult
20.
Eur J Public Health ; 24(4): 631-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24567289

ABSTRACT

BACKGROUND: Since the 1970s, legislation has led to progress in tackling several air pollutants. We quantify the annual monetary benefits resulting from reductions in mortality from the year 2000 onwards following the implementation of three European Commission regulations to reduce the sulphur content in liquid fuels for vehicles. METHODS: We first compute premature deaths attributable to these implementations for 20 European cities in the Aphekom project by using a two-stage health impact assessment method. We then justify our choice to only consider mortality effects as short-term effects. We rely on European studies when selecting the central value of a life-year estimate (€ 2005 86 600) used to compute the monetary benefits for each of the cities. We also conduct an independent sensitivity analysis as well as an integrated uncertainty analysis that simultaneously accounts for uncertainties concerning epidemiology and economic valuation. RESULTS: The implementation of these regulations is estimated to have postponed 2212 (95% confidence interval: 772-3663) deaths per year attributable to reductions in sulphur dioxide for the 20 European cities, from the year 2000 onwards. We obtained annual mortality benefits related to the implementation of the European regulation on sulphur dioxide of € 2005 191.6 million (95% confidence interval: € 2005 66.9-€ 2005 317.2). CONCLUSION: Our approach is conservative in restricting to mortality effects and to short-term benefits only, thus only providing the lower-bound estimate. Our findings underline the health and monetary benefits to be obtained from implementing effective European policies on air pollution and ensuring compliance with them over time.


Subject(s)
Air Pollutants/toxicity , Air Pollution/legislation & jurisprudence , Sulfur Dioxide/toxicity , Air Pollutants/economics , Air Pollution/economics , Air Pollution/prevention & control , Cities/economics , Cities/statistics & numerical data , Cost-Benefit Analysis , Environmental Monitoring/statistics & numerical data , Europe/epidemiology , Humans , Mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...