Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Meteorit Planet Sci ; 54(11): 2769-2813, 2019 Nov.
Article in English | MEDLINE | ID: mdl-33716489

ABSTRACT

Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70-80% are ureilites (achondrites) and 20-30% are various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between ureilitic and chondritic materials and provide direct information about the structure and composition of asteroid 2008 TC3. AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses rounded to angular clasts (<10 µm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and metal-sulfide, as well as chondrules (~130-600 µm) and chondrule fragments. The C1 material consists of fine-grained phyllosilicates (serpentine and saponite) and amorphous material, magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28-42), an unidentified Ca-rich silicate phase, Fe,Ni sulfides, and minor Ca-phosphate and ilmenite. It has similarities to CI1 but shows evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of several CC-like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The olivine (Fo 75-88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, graphite, and some metal-sulfide are ureilitic, based on mineral compositions, textures, and oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen isotope compositions. Some of the metal-sulfide clasts are derived from EC. AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. Reflectance spectra of AhS 91A are dark (reflectance ~0.04-0.05) and relatively featureless in VNIR, and have an ~2.7 µm absorption band due to OH- in phyllosilicates. Spectral modeling, using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F-type spectrum of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A-like materials, with as much as 40-70% of the latter, and <10% of OC, EC and other meteorite types. The bulk density of AhS 91A (2.35 ± 0.05 g/cm3) is lower than bulk densities of other AhS stones, and closer to estimates for the asteroid (~1.7-2.2 g/cm3). Its porosity (36%) is near the low end of estimates for the asteroid (33-50%), suggesting significant macroporosity. The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 671 could represent a volume of regolith formed when a CC-like body impacted into already well-gardened ureilitic + impactor-derived debris. AhS 91A bulk samples do not show a solar wind (SW) component, so they represent sub-surface layers. AhS 91A has a lower cosmic ray exposure (CRE) age (~5-9 Ma) than previously studied AhS stones (11-22 Ma). The spread in CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that ureilitic asteroids could have detectable ~2.7 µm absorption bands.

2.
Meteorit Planet Sci ; 52(5): 949-978, 2017 May.
Article in English | MEDLINE | ID: mdl-30498327

ABSTRACT

Miller Range (MIL) 090340 and MIL 090206 are olivine-rich achondrites originally classified as ureilites. We investigate their petrography, mineral compositions, olivine Cr valences, equilibration temperatures, and (for MIL 090340) oxygen isotope compositions, and compare them with ureilites and other olivine-rich achondrites. We conclude that they are brachinite-like achondrites that provide new insights into the petrogenesis of brachinite clan meteorites. MIL 090340,6 has a granoblastic texture and consists of ~97 modal % by area olivine (Fo = molar Mg/[Mg+Fe] = 71.3±0.6). It also contains minor to trace augite, chromite, chlorapatite, orthopyroxene, metal, troilite, and terrestrial Fe-oxides. Approximately 80% by area of MIL 090206,5 has a granoblastic texture of olivine (Fo 72.3±0.1) plus minor augite and chromite, similar to MIL 090340 but also containing minor plagioclase. The rest of the section consists of a single crystal of orthopyroxene (~11×3 mm), poikilitically enclosing rounded grains of olivine (Fo = 76.1±0.6), augite, chromite, metal and sulfide. Equilibration temperatures for MIL 090340 and MIL 090206, calculated from olivine-spinel, olivine-augite, and two-pyroxene thermometry range from ~800-930°C. In both samples, symplectic intergrowths of Ca-poor orthopyroxene + opaque phases (Fe-oxides, sulfide, metal) occur as rims on and veins/patches within olivine. Before terrestrial weathering, the opaques were probably mostly sulfide, with minor metal. All petrologic properties of MIL 090340 and MIL 090206 are consistent with those of brachinite clan meteorites, and largely distinct from those of ureilites. Oxygen isotope compositions of olivine in MIL 090340 (δ18O = 5.08±0.30‰, δ17O = 2.44±0.21‰, and Δ17O = -0.20±0.12‰) are also within the range of brachinite clan meteorites, and well distinguished from ureilites. Olivine Cr valences in MIL 090340 and the granoblastic area of MIL 090206 are 2.57±0.06 and 2.59±0.07, respectively, similar to those of three brachinites also analyzed here (Brachina, Hughes 026, Nova 003). They are higher than those of olivine in ureilites, even those containing chromite. The valence systematics of MIL 090340, MIL 090206, and the three analyzed brachinites (lower Fo = more oxidized Cr) are consistent with previous evidence that brachinite-like parent bodies were inherently more oxidized than the ureilite parent body. The symplectic orthopyroxene + sulfide/metal assemblages in MIL 090340, MIL 090206, and many brachinite clan meteorites have superficial similarities to characteristic "reduction rims" in ureilites. However, they differ significantly in detail. They likely formed by reaction of olivine with S-rich fluids, with only minor reduction. MIL 090340 and the granoblastic area of MIL 090206 are similar in modal mineralogy and texture to most brachinites, but have higher Fo values typical of brachinite-like achondrites. The poiklitic pyroxene area of MIL 090206 is more typical of brachinite-like achondrites. The majority of their properties suggest that MIL 090340 and MIL 090206 are residues of low-degree partial melting. The poikilitic area of MIL 090206 could be a result of limited melt migration, with trapping and recrystallization of a small volume of melt in the residual matrix. These two samples are so similar in mineral compositions, Cr valence, and cosmic ray exposure ages that they could be derived from the same lithologic unit on a common parent body.

SELECTION OF CITATIONS
SEARCH DETAIL
...