Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Tissue Eng Regen Med ; 11(3): 713-723, 2017 03.
Article in English | MEDLINE | ID: mdl-25546487

ABSTRACT

An FDA-approved, prototypic, living, bilayered skin construct (BSC) has been used for non-healing wounds. Using this particular construct as proof of principle, we hypothesized that an in vitro 'priming' step may enhance its repertoire of expression of key mediators and genes. The priming step used here was incubation in Dulbecco's modified Eagle's medium (DMEM) for 24 h at 37°C and 5% CO2 , with or without construct meshing. Microarray and ingenuity pathway analysis (IPA) showed that >1000 genes were overexpressed by the priming step, including interleukin 6 (IL-6), which plays important roles in wound healing. Genes highly overexpressed by priming were those involved in epidermal proliferation and migration. Quantitative real-time PCR (qRT-PCR), immunostaining and western blots verified the results. An epiboly assay (epidermal migration over dermis) showed that BSC epiboly was inhibited by IL-6 neutralizing antibody. Back wounds of nude mice were treated with primed or control BSCs for 3 days prior to harvesting; primed BSCs showed a significantly (p = 0.006) greater level of epidermal migration vs unprimed. Our study demonstrates that an in vitro priming step induces wound healing-related genes in the BSC, leading to a construct that could prove more effective in stimulating wound healing. Copyright © 2014 John Wiley & Sons, Ltd.


Subject(s)
Cell Movement , Epidermal Cells , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Antibodies, Neutralizing/pharmacology , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cluster Analysis , Interleukin-6/immunology , Keratin-17/metabolism , Mice, Nude , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Transcriptome
2.
Int J Low Extrem Wounds ; 12(4): 256-64, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24275756

ABSTRACT

Innovative approaches are needed to accelerate the healing of human chronic wounds not responding to conventional therapies. An evolving and promising treatment is the use of stem cells. Our group has previously described the use of expanded (in vitro) autologous stem cells aspirated from human bone marrow and applied topically in a fibrin spray to human acute and chronic wounds. More recently, we have sought ways to mobilize stem cells directly from the bone marrow, without in vitro expansion. In this report, we show that systemic injections of granulocyte colony-stimulating factor (GCSF) can mobilize stem cells from bone marrow into the peripheral blood and then to the wound site. Our objectives were to optimize parameters for this method by using mouse models and proof of principle in a human chronic wound situation. Mice were injected for 5 days with 2 different formulations of GCSF and compared to control saline. To monitor stem cell mobilization, flow cytometric measurements of Sca-1 and c-Kit and colony-forming cell assays were performed. Full-thickness tail wounds in mice were created and monitored for healing, and polyvinyl alcohol sponges were implanted dorsally to assess collagen accumulation. To determine bone marrow stem cell homing to the wound site, chimeric mice transplanted with Green Fluorescent Protein bone marrow cells were scanned by live imaging. Additionally, as proof of principle, we tested the systemic GCSF approach in a patient with a nonhealing venous ulcer. Our findings lay the ground work and indicate that the systemic administration of GCSF is effective in mobilizing bone marrow stem cells into the peripheral blood and to the wound site. These findings are associated with an increased accumulation of collagen and promising results in terms of wound bed preparation and healing.


Subject(s)
Bone Marrow Cells , Diabetic Foot/drug therapy , Granulocyte Colony-Stimulating Factor/administration & dosage , Hematopoietic Stem Cell Mobilization/methods , Varicose Ulcer/drug therapy , Wound Healing/drug effects , Animals , Disease Models, Animal , Drug Monitoring , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...