Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 44(6): 809-20, 2016 06.
Article in English | MEDLINE | ID: mdl-27029743

ABSTRACT

Daclatasvir is a first-in-class, potent, and selective inhibitor of the hepatitis C virus nonstructural protein 5A replication complex. In support of nonclinical studies during discovery and exploratory development, liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance were used in connection with synthetic and radiosynthetic approaches to investigate the biotransformation of daclatasvir in vitro and in cynomolgus monkeys, dogs, mice, and rats. The results of these studies indicated that disposition of daclatasvir was accomplished mainly by the release of unchanged daclatasvir into bile and feces and, secondarily, by oxidative metabolism. Cytochrome P450s were the main enzymes involved in the metabolism of daclatasvir. Oxidative pathways included δ-oxidation of the pyrrolidine moiety, resulting in ring opening to an aminoaldehyde intermediate followed by an intramolecular reaction between the aldehyde and the proximal imidazole nitrogen atom. Despite robust formation of the resulting metabolite in multiple systems, rates of covalent binding to protein associated with metabolism of daclatasvir were modest (55.2-67.8 pmol/mg/h) in nicotinamide adenine dinucleotide phosphate (reduced form)-supplemented liver microsomes (human, monkey, rat), suggesting that intramolecular rearrangement was favored over intermolecular binding in the formation of this metabolite. This biotransformation profile supported the continued development of daclatasvir, which is now marketed for the treatment of chronic hepatitis C virus infection.


Subject(s)
Biotransformation/physiology , Imidazoles/metabolism , Pyrrolidines/metabolism , Animals , Bile/metabolism , Carbamates , Chromatography, High Pressure Liquid/methods , Cytochrome P-450 Enzyme System/metabolism , Dogs , Haplorhini , Hepatocytes/metabolism , Humans , Macaca fascicularis , Magnetic Resonance Spectroscopy/methods , Male , Mass Spectrometry/methods , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Valine/analogs & derivatives
2.
J Med Chem ; 57(5): 2013-32, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24521299

ABSTRACT

The biphenyl derivatives 2 and 3 are prototypes of a novel class of NS5A replication complex inhibitors that demonstrate high inhibitory potency toward a panel of clinically relevant HCV strains encompassing genotypes 1-6. However, these compounds exhibit poor systemic exposure in rat pharmacokinetic studies after oral dosing. The structure-activity relationship investigations that improved the exposure properties of the parent bis-phenylimidazole chemotype, culminating in the identification of the highly potent NS5A replication complex inhibitor daclatasvir (33) are described. An element critical to success was the realization that the arylglycine cap of 2 could be replaced with an alkylglycine derivative and still maintain the high inhibitory potency of the series if accompanied with a stereoinversion, a finding that enabled a rapid optimization of exposure properties. Compound 33 had EC50 values of 50 and 9 pM toward genotype-1a and -1b replicons, respectively, and oral bioavailabilities of 38-108% in preclinical species. Compound 33 provided clinical proof-of-concept for the NS5A replication complex inhibitor class, and regulatory approval to market it with the NS3/4A protease inhibitor asunaprevir for the treatment of HCV genotype-1b infection has recently been sought in Japan.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Imidazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Area Under Curve , Carbamates , Dogs , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Hepacivirus/enzymology , Hepacivirus/physiology , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Magnetic Resonance Spectroscopy , Pyrrolidines , Rats , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Valine/analogs & derivatives
3.
J Med Chem ; 57(5): 1995-2012, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24437689

ABSTRACT

A medicinal chemistry campaign that was conducted to address a potential genotoxic liability associated with an aniline-derived scaffold in a series of HCV NS5A inhibitors with dual GT-1a/-1b inhibitory activity is described. Anilides 3b and 3c were used as vehicles to explore structural modifications that retained antiviral potency while removing the potential for metabolism-based unmasking of the embedded aniline. This effort resulted in the discovery of a highly potent biarylimidazole chemotype that established a potency benchmark in replicon assays, particularly toward HCV GT-1a, a strain with significant clinical importance. Securing potent GT-1a activity in a chemotype class lacking overt structural liabilities was a critical milestone in the effort to realize the full clinical potential of targeting the HCV NS5A protein.


Subject(s)
Antiviral Agents/pharmacology , Genotype , Hepacivirus/drug effects , Imidazoles/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Replicon/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Crystallography, X-Ray , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Hepacivirus/genetics , Hepacivirus/physiology , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
4.
J Med Chem ; 57(5): 1976-94, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-23573957

ABSTRACT

A series of symmetrical E-stilbene prolinamides that originated from the library-synthesized lead 3 was studied with respect to HCV genotype 1a (G-1a) and genotype 1b (G-1b) replicon inhibition and selectivity against BVDV and cytotoxicity. SAR emerging from an examination of the prolinamide cap region revealed 11 to be a selective HCV NS5A inhibitor exhibiting submicromolar potency against both G-1a and G-1b replicons. Additional structural refinements resulted in the identification of 30 as a potent, dual G-1a/1b HCV NS5A inhibitor.


Subject(s)
Antiviral Agents/pharmacology , Genotype , Hepacivirus/drug effects , Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Replicon/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Antiviral Agents/chemistry , Hepacivirus/genetics , Hepacivirus/physiology , Magnetic Resonance Spectroscopy , Models, Molecular , Protease Inhibitors/chemistry , Spectrometry, Mass, Electrospray Ionization
5.
Bioorg Med Chem Lett ; 23(3): 779-84, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23273521

ABSTRACT

In a recent disclosure, we described the discovery of dimeric, prolinamide-based NS5A replication complex inhibitors exhibiting excellent potency towards an HCV genotype 1b replicon. That disclosure dealt with the SAR exploration of the peripheral region of our lead chemotype, and herein is described the SAR uncovered from a complementary effort that focused on the central core region. From this effort, the contribution of the core region to the overall topology of the pharmacophore, primarily vector orientation and planarity, was determined, with a set of analogs exhibiting <10 nM EC(50) in a genotype 1b replicon assay.


Subject(s)
Antiviral Agents/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Carbamates , Hepacivirus/drug effects , Imidazoles/chemistry , Imidazoles/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Pyrrolidines , Structure-Activity Relationship , Valine/analogs & derivatives , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
6.
Bioorg Med Chem Lett ; 22(19): 6063-6, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22959243

ABSTRACT

In a previous disclosure,(1) we reported the dimerization of an iminothiazolidinone to form 1, a contributor to the observed inhibition of HCV genotype 1b replicon activity. The dimer was isolated via bioassay-guided fractionation experiments and shown to be a potent inhibitor of genotype 1b HCV replication for which resistance mapped to the NS5A protein. The elements responsible for governing HCV inhibitory activity were successfully captured in the structurally simplified stilbene prolinamide 2. We describe herein the early SAR and profiling associated with stilbene prolinamides that culminated in the identification of analogs with PK properties sufficient to warrant continued commitment to this chemotype. These studies represent the key initial steps toward the discovery of daclatasvir (BMS-790052), a compound that has demonstrated clinical proof-of-concept for inhibiting the NS5A replication complex in the treatment of HCV infection.


Subject(s)
Antiviral Agents/pharmacology , Imidazoles/pharmacology , Proline/analogs & derivatives , Stilbenes/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Carbamates , Dose-Response Relationship, Drug , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacology , Pyrrolidines , Stilbenes/chemical synthesis , Stilbenes/chemistry , Structure-Activity Relationship , Valine/analogs & derivatives
8.
J Nat Prod ; 68(4): 550-3, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15844946

ABSTRACT

Nocathiacin I (1) was converted to its deoxy indole analogue, nocathiacin II (2), another natural product, by a unique and facile chemical process. This process was applied to nocathiacin IV (4), generating the lactone analogue of glycothiohexide alpha (5), which was also prepared from nocathiacin II by a mild hydrolytic process. In contrast to glycothiohexide alpha (3), this lactone analogue (5) was found to exhibit in vivo antibacterial efficacy in an animal (mouse) infection model.


Subject(s)
Anti-Bacterial Agents/chemistry , Peptides, Cyclic/chemistry , Peptides/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Intercellular Signaling Peptides and Proteins , Mice , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Peptides/pharmacology , Peptides, Cyclic/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology
9.
Bioorg Med Chem ; 11(2): 265-79, 2003 Jan 17.
Article in English | MEDLINE | ID: mdl-12470720

ABSTRACT

Forty-five novel cephalosporin derivatives with activity against methicillin-resistant Staphylococcus aureus (MRSA) are described. The compounds contain novel cinnamic acid moieties at C-7 that were synthesized using a key Heck reaction followed by nucleophilic aromatic substitution reactions. The most active compound (41) displayed an MIC(90) against MRSA of 1.0 microg/mL, and a PD(50) of 0.8 mg/kg. Compound 14 was found to be very safe in a mouse model of acute toxicity.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cephalosporins/chemistry , Cephalosporins/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , Staphylococcus aureus/drug effects , Animals , Disease Models, Animal , Lethal Dose 50 , Methicillin Resistance , Mice , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity , Structure-Activity Relationship , Toxicity Tests, Acute
10.
Bioorg Med Chem ; 11(2): 281-91, 2003 Jan 17.
Article in English | MEDLINE | ID: mdl-12470721

ABSTRACT

Twenty-seven novel cephalosporin derivatives with activity against methicillin-resistant Staphylococcus aureus (MRSA) are described. The compounds contain novel acid moieties at C-7 that were synthesized using nucleophilic aromatic substitution reactions and Stille couplings. The most interesting compound (6) displayed an MIC(90) against MRSA of 3.7 microg/mL, and an average PD(50) of 3.9 mg/kg.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cephalosporins/chemistry , Cephalosporins/pharmacology , Staphylococcus aureus/drug effects , Animals , Disease Models, Animal , Lethal Dose 50 , Methicillin Resistance , Mice , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...