Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 128(6): 2518-2528, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38379916

ABSTRACT

Poly(p-phenylenevinylene) (PPV) is a staple of the family of conjugated polymers with desirable optoelectronic properties for applications including light-emitting diodes (LEDs) and photovoltaic devices. Although the significant impact of olefin geometry on the steady-state optical properties of PPVs has been extensively studied, PPVs with precise stereochemistry have yet to be investigated using nonlinear optical spectroscopy for quantum sensing, as well as light harvesting for biological applications. Herein, we report our investigation of the influence of olefin stereochemistry on both linear and nonlinear optical properties through the synthesis of all-cis and all-trans PPV copolymers. We performed two-photon absorption (TPA) using a classical and entangled light source and compared both classical TPA and entangled two-photon absorption (ETPA) cross sections of these stereodefined PPVs. Whereas the TPA cross section of the all-trans PPV was expectedly higher than that of all-cis PPV, presumably because of the larger transition dipole moment, the opposite trend was measured via ETPA, with the all-cis PPV exhibiting the highest ETPA cross section. DFT calculations suggest that this difference might stem from the interaction of entangled photons with lower-lying electronic states in the all-cis PPV variant. Additionally, we explored the photoinduced processes for both cis and trans PPVs through time-resolved fluorescence upconversion and femtosecond transient absorption techniques. This study revealed that the sensitivity of PPVs in two-photon absorption varies with classical versus quantum light and can be modulated through the control of the geometry of the repeating alkenes, which is a key stepping stone toward their use in quantum sensing, bioimaging, and the design of polymer-based light-harvesting systems.

2.
Proc Natl Acad Sci U S A ; 120(35): e2307719120, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37603737

ABSTRACT

Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light-based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes.

3.
J Phys Chem Lett ; 13(12): 2772-2781, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35318850

ABSTRACT

Correct biological interpretation from cell imaging can be achieved only if the observed phenomena proceed with negligible perturbation from the imaging system. Herein, we demonstrate microscopic images of breast cancer cells created by the fluorescence selectively excited in the process of entangled two-photon absorption in a scanning microscope at an excitation intensity orders of magnitude lower than that used for classical two-photon microscopy. Quantum enhanced entangled two-photon microscopy has shown cell imaging capabilities at an unprecedented low excitation intensity of ∼3.6 × 107 photons/s, which is a million times lower than the excitation level for the classical two-photon fluorescence image obtained in the same microscope. The extremely low light probe intensity demonstrated in entangled two-photon microscopy is of critical importance to minimize photobleaching during repetitive imaging and damage to cells in live-cell applications. This technology opens new avenues in cell investigations with light microscopy, such as enhanced selectivity and time-frequency resolution.


Subject(s)
Breast Neoplasms , Photons , Female , Humans , Light , Microscopy/methods
4.
Acc Chem Res ; 55(7): 991-1003, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35312287

ABSTRACT

The enhanced interest in quantum-related phenomena has provided new opportunities for chemists to push the limits of detection and analysis of chemical processes. As some have called this the second quantum revolution, a time has come to apply the rules learned from previous research in quantum phenomena toward new methods and technologies important to chemists. While there has been great interest recently in quantum information science (QIS), the quest to understand how nonclassical states of light interact with matter has been ongoing for more than two decades. Our entry into this field started around this time with the use of materials to produce nonclassical states of light. Here, the process of multiphoton absorption led to photon-number squeezed states of light, where the photon statistics are sub-Poissonian. In addition to the great interest in generating squeezed states of light, there was also interest in the formation of entangled states of light. While much of the effort is still in foundational physics, there are numerous new avenues as to how quantum entanglement can be applied to spectroscopy, imaging, and sensing. These opportunities could have a large impact on the chemical community for a broad spectrum of applications.In this Account, we discuss the use of entangled (or quantum) light for spectroscopy as well as applications in microscopy and interferometry. The potential benefits of the use of quantum light are discussed in detail. From the first experiments in porphyrin dendrimer systems by Dr. Dong-Ik Lee in our group to the measurements of the entangled two photon absorption cross sections of biological systems such as flavoproteins, the usefulness of entangled light for spectroscopy has been illustrated. These early measurements led the way to more advanced measurements of the unique characteristics of both entangled light and the entangled photon absorption cross-section, which provides new control knobs for manipulating excited states in molecules.The first reports of fluorescence-induced entangled processes were in organic chromophores where the entangled photon cross-section was measured. These results would later have widespread impact in applications such as entangled two-photon microscopy. From our design, construction and implementation of a quantum entangled photon excited microscope, important imaging capabilities were achieved at an unprecedented low excitation intensity of 107 photons/s, which is 6 orders of magnitude lower than the excitation level for the classical two-photon image. New reports have also illustrated an advantage of nonclassical light in Raman imaging as well.From a standpoint of more precise measurements, the use of entangled photons in quantum interferometry may offer new opportunities for chemistry research. Experiments that combine molecular spectroscopy and quantum interferometry, by utilizing the correlations of entangled photons in a Hong-Ou-Mandel (HOM) interferometer, have been carried out. The initial experiment showed that the HOM signal is sensitive to the presence of a resonant organic sample placed in one arm of the interferometer. In addition, parameters such as the dephasing time have been obtained with the opportunity for even more advanced phenomenology in the future.


Subject(s)
Photons , Spectrum Analysis
5.
J Am Chem Soc ; 143(41): 16930-16934, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34613733

ABSTRACT

Entangled two-photon absorption (ETPA) is known to create photoinduced transitions with extremely low light intensity, reducing the risk of phototoxicity compared to classical two-photon absorption. Previous works have predicted the ETPA cross-section, σe, to vary inversely with the product of entanglement time (Te) and entanglement area (Ae), i.e., σe ∼ 1/AeTe. The decreasing σe with increasing Te has limited ETPA to fs-scale Te, while ETPA applications for ps-scale spectroscopy have been unexplored. However, we show that spectral-spatial coupling, which reduces Ae as the SPDC bandwidth (σf) decreases, plays a significant role in determining σe when Te > ∼100 fs. We experimentally measured σe for zinc tetraphenylporphyrin at several σf values. For type-I ETPA, σe increases as σf decreases down to 0.1 ps-1. For type-II SPDC, σe is constant for a wide range of σf. With a theoretical analysis of the data, the maximum type-I σe would occur at σf = 0.1 ps-1 (Te = 10 ps). At this maximum, σe is 1 order of magnitude larger than fs-scale σe and 3 orders of magnitude larger than previous predictions of ps-scale σe. By utilizing this spectral-spatial coupling, narrowband type-I ETPA provides a new opportunity to increase the efficiency of measuring nonlinear optical signals and to control photochemical reactions requiring ps temporal precision.

6.
ACS Nano ; 15(8): 12955-12965, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34346667

ABSTRACT

Cesium-halide perovskite quantum dots (QDs) have gained tremendous interest as quantum emitters in quantum information processing applications due to their optical and photophysical properties. However, engineering excitonic states in quantum dots requires a deep knowledge of the coherent dynamics of their excitons at a single-particle level. Here, we use femtosecond time-resolved two-photon near-field scanning optical microscopy (NSOM) to reveal coherences involving a single cesium lead bromide perovskite QD (CsPbBr3) at room temperature. We show that, compared to other nonperovskite nanoparticles, the electronic coherence on a single perovskite QD has a relatively long lifetime of ca. 150 fs, whereas CdSe QDs have exciton coherence times shorter than 75 fs at room temperature. One possible explanation for the longer coherence time observed for the CsPbBr3 perovskite system is related to the exciton fine structure of these perovskite QDs compared to other nanoparticles. These perovskite QDs exhibit interesting optical properties that differ from those of the traditional QDs including bright triplet exciton states. In fact, due to the small amplitude of the energy gap fluctuations of dipole-allowed triplet states in perovskite QDs, the coherent superposition could be preserved for longer times. Furthermore, single-particle excitation approach implemented in this work allows us to remove effects of heterogeneity that are usually present in ensemble averaging experiments at room temperature. The realization of quantum-mechanical phase-coherence of a charge carrier that can operate at room temperature is an issue of great importance for the potential application of coherent electronic phenomena in electronic and optoelectronic devices. These interesting findings provide further evidence of the great potential of these perovskite QDs as candidates for quantum computing and information processing applications.

7.
J Am Chem Soc ; 143(24): 9070-9081, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34124903

ABSTRACT

Entangled photon pairs have been used for molecular spectroscopy in the form of entangled two-photon absorption and in quantum interferometry for precise measurements of light source properties and time delays. We present an experiment that combines molecular spectroscopy and quantum interferometry by utilizing the correlations of entangled photons in a Hong-Ou-Mandel (HOM) interferometer to study molecular properties. We find that the HOM signal is sensitive to the presence of a resonant organic sample placed in one arm of the interferometer, and the resulting signal contains information pertaining to the light-matter interaction. We can extract the dephasing time of the coherent response induced by the excitation on a femtosecond time scale. A dephasing time of 102 fs is obtained, which is relatively short compared to times found with similar methods and considering line width broadening and the instrument entanglement time As the measurement is done with coincidence counts as opposed to simply intensity, it is unaffected by even-order dispersion effects, and because interactions with the molecular state affect the photon correlation, the observed measurement contains only these effects and no other classical losses. The experiments are accompanied by theory that predicts the observed temporal shift and captures the entangled photon joint spectral amplitude and the molecule's transmission in the coincidence counting rate. Thus, we present a proof-of-concept experimental method based of entangled photon interferometry that can be used to characterize optical properties in organic molecules and can in the future be expanded on for more complex spectroscopic studies of nonlinear optical properties.

8.
J Phys Chem B ; 125(19): 5114-5131, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33961426

ABSTRACT

Previous studies have proposed that the presence of a flexible π-bridge linker is crucial in activating intramolecular singlet exciton fission (iSEF) in multichromophoric systems. In this study, we report the photophysical properties of three analogous perylene diimide (PDI) dendritic tetramers showing flexible/twisted π-bridged structures with α- and ß-substitutions and a rigid/planar structure with a ß-fused ring (ßC) connection to a benzodithiophene-thiophene (BDT-Th) core. The rigidity and enhanced planarity of ßC lead to significant intramolecular charge transfer and triplet formation via an intersystem crossing pathway. Steady-state spectroscopic measurements reveal similar absorption and emission spectra for the α-tetramer and the parent PDI monomer. However, their fluorescence quantum yield is significantly different. The negligible fluorescence yield of the α-tetramer (0.04%) is associated with a competitive nonradiative decay pathway. Indeed, for this twisted compound in a high polar environment, a fast and efficient iSEF with a triplet quantum yield of 124% is observed. Our results show that the α-single-bond connections in the α compound are capable of interrupting the coupling among the PDI units, favoring iSEF. We propose that the formation of the double triplet (1[TT]) state is through a superposition of singlet states known as [S1S0][TT]CT, which has been suggested previously for pentacene derivatives. Using steady-state and time-resolved spectroscopic experiments, we demonstrate that the conformational flexibility of the linker itself is necessary but not sufficient to allow iSEF. For the case of the other twisted tetramer, ß, the strong π-π co-facial interactions between the adjacent PDI units in its structure lead to excimer formation. These excimer states trap the singlet excitons preventing the formation of the 1[TT] state, thus inhibiting iSEF.

10.
J Am Chem Soc ; 142(30): 12966-12975, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32644814

ABSTRACT

Quantum entanglement has been shown to imply correlations stronger than those allowed by classical models. The possibility of performing tasks that are classically impossible has made quantum entanglement a powerful resource for the development of novel methods and applications in various fields of research such as quantum computing, quantum cryptography, and quantum metrology. There is a great need for the development of next generation instrumentation and technologies utilizing entangled quantum light. Among the many applications of nonclassical states of light, nonlinear microscopy has the potential to make an impact in broad areas of science from physics to biology. Here, the microscopic image created by the fluorescence selectively excited by the process of the entangled two-photon absorption is reported. Entangled two-photon microscopy offers nonlinear imaging capabilities at an unprecedented low excitation intensity 107, which is 6 orders of magnitude lower than the excitation level for the classical two-photon image. The nonmonotonic dependence of the image on the femtosecond delay between the components of the entangled photon pair is demonstrated. This delay dependence is a result of specific quantum interference effects associated with the entanglement and this is not observable with classical excitation light. In combination with novel spectroscopic capabilities provided by a nonclassical light excitation, this is of critical importance for sensing and biological applications.

11.
Photochem Photobiol Sci ; 19(9): 1152-1159, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32639494

ABSTRACT

The two-photon absorption properties of a pyrene-pyridinium dye (1) were studied for potential application in two-photon spectroscopy. When probe 1 was used in cellular two-photon fluorescence microscopy imaging, it allowed the visualization of nuclei in live cells with a relatively low probe concentration (such as 1 µM). Spectroscopic evidence further revealed that probe 1 interacted with DNA as an intercalator. The proposed DNA intercalation properties of probe 1 were consistent with the experimental findings that suggested that the observed nucleus staining ability is dependent on the substituents on the pyridinium fragment of the probe.


Subject(s)
Cell Nucleus/chemistry , Fluorescent Dyes/chemistry , Photons , Pyrenes/chemistry , Animals , COS Cells , Cattle , Cell Survival , Cells, Cultured , Chlorocebus aethiops , DNA/chemistry , Microscopy, Fluorescence , Molecular Structure , Pyridinium Compounds/chemistry
12.
J Am Chem Soc ; 142(23): 10446-10458, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32401020

ABSTRACT

The use of a nonclassical light source for studying molecular electronic structure has been of great interest in many applications. Here we report a theoretical study of entangled two-photon absorption (ETPA) in organic chromophores, and we provide new insight into the quantitative relation between ETPA and the corresponding unentangled TPA based on the significantly different line widths associated with entangled and unentangled processes. A sum-over-states approach is used to obtain classical TPA and ETPA cross sections and to explore the contribution of each electronic state to the ETPA process. The transition moments and energies needed for this calculation were obtained from a second linear-response (SLR) TDDFT method [J. Chem. Phys., 2016, 144, 204105], which enables the treatment of relatively large polythiophene dendrimers that serve as two-photon absorbers. In addition, the SLR calculations provide estimates of the excited state radiative line width, which we relate to the entangled two-photon density of states using a quantum electrodynamic analysis. This analysis shows that for the dendrimers being studied, the line width for ETPA is orders of magnitude narrower than for TPA, corresponding to highly entangled photons with a large Schmidt number. The calculated cross sections are in good agreement with the experimentally reported values. We also carried out a state-resolved analysis to unveil pathways for the ETPA process, and these demonstrate significant interference behavior. We emphasize that the use of entangled photons in TPA process plays a critical role in probing the detailed electronic structure of a molecule by probing light-matter interference nature in the quantum limit.

13.
Chem Sci ; 11(33): 8757-8770, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-34123128

ABSTRACT

In this study, two analogous perylene diimide (PDI) trimers, whose structures show rotatable single bond π-bridge connection (twisted) vs. rigid/fused π-bridge connection (planar), were synthesized and investigated. We show via time resolved spectroscopic measurements how the π-bridge connections in A-π-D-π-A-π-D-π-A multichromophoric PDI systems strongly affect the triplet yield and triplet formation rate. In the planar compound, with stronger intramolecular charge transfer (ICT) character, triplet formation occurs via conventional intersystem crossing. However, clear evidence of efficient and fast intramolecular singlet exciton fission (iSEF) is observed in the twisted trimer compound with weaker ICT character. Multiexciton triplet generation and separation occur in the twisted (flexible-bridged) PDI trimer, where weak coupling among the units is observed as a result of the degenerate double triplet and quintet states, obtained by quantum chemical calculations. The high triplet yield and fast iSEF observed in the twisted compound are due not only to enthalpic viability but also to the significant entropic gain allowed by its trimeric structure. Our results represent a significant step forward in structure-property understanding, and may direct the design of new efficient iSEF materials.

14.
Nat Rev Chem ; 4(9): 490-504, 2020 Sep.
Article in English | MEDLINE | ID: mdl-37127960

ABSTRACT

The power of chemistry to prepare new molecules and materials has driven the quest for new approaches to solve problems having global societal impact, such as in renewable energy, healthcare and information science. In the latter case, the intrinsic quantum nature of the electronic, nuclear and spin degrees of freedom in molecules offers intriguing new possibilities to advance the emerging field of quantum information science. In this Perspective, which resulted from discussions by the co-authors at a US Department of Energy workshop held in November 2018, we discuss how chemical systems and reactions can impact quantum computing, communication and sensing. Hierarchical molecular design and synthesis, from small molecules to supramolecular assemblies, combined with new spectroscopic probes of quantum coherence and theoretical modelling of complex systems, offer a broad range of possibilities to realize practical quantum information science applications.

15.
Sci Rep ; 9(1): 11351, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31383882

ABSTRACT

Despite decades of research, the mechanism of anesthetic-induced unconsciousness remains incompletely understood, with some advocating for a quantum mechanical basis. Despite associations between general anesthesia and changes in physical properties such as electron spin, there has been no empirical demonstration that general anesthetics are capable of functional quantum interactions. In this work, we studied the linear and non-linear optical properties of the halogenated ethers sevoflurane (SEVO) and isoflurane (ISO), using UV-Vis spectroscopy, time dependent-density functional theory (TD-DFT) calculations, classical two-photon spectroscopy, and entangled two-photon spectroscopy. We show that both of these halogenated ethers interact with pairs of 800 nm entangled photons while neither interact with 800 nm classical photons. By contrast, nonhalogenated diethyl ether does not interact with entangled photons. This is the first experimental evidence that halogenated anesthetics can directly undergo quantum interaction mechanisms, offering a new approach to understanding their physicochemical properties.

18.
J Phys Chem A ; 123(10): 1905-1907, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30866632
19.
J Am Chem Soc ; 140(46): 15731-15743, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30375862

ABSTRACT

In this investigation, we report evidence for energy transfer in new protein-based megamolecules with tunable distances between donor and acceptor fluorescent proteins. The megamolecules used in this work are monodisperse oligomers, with molecular weights of ∼100-300 kDa and lengths of ∼5-20 nm, and are precisely defined structures of fusion protein building blocks and covalent cross-linkers. Such structures are promising because the study of energy transfer in protein complexes is usually difficult in this long length regime due to synthetic limitations. We incorporated fluorescent proteins into the megamolecule structure and varied the separation distance between donor and acceptor by changing the length of the cross-linker in dimer conjugates and inserting nonfluorescent spacer proteins to create oligomers. Two-photon absorption measurements demonstrated strong coupling between donor and acceptor dipoles in the megamolecules. For the dimer systems, no effect of the cross-linker length on energy transfer efficiency was observed with the steady-state fluorescence investigation. However, for the same dimer conjugates, energy transfer rates decreased upon increasing cross-linker length, as evaluated by fluorescence up-conversion. Molecular dynamics simulations were used to rationalize the results, providing quantitative agreement between measured and calculated energy transfer lengths for steady-state results, and showing that the differences between the time-resolved and steady-state measurements arise from the long time scale for large-scale fluctuations in the megamolecule structure. Our results show an increase in energy transfer length with increasing megamolecule size. This is evidence for long-range energy transfer in large protein megamolecules.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Energy Transfer , Fluorescence Resonance Energy Transfer , Molecular Structure
20.
J Am Chem Soc ; 140(44): 14562-14566, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30346158

ABSTRACT

In this contribution, the entangled two-photon absorption (ETPA) process on naturally occurring flavoproteins was studied. Low temperature responsive protein (LOT6P) and b-type dihydroorotate dehydrogenase (DHOD B), which possess flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) chromophores embedded in the protein environment, were investigated. The ETPA cross-section was measured, and we found that it increases when going from an aqueous solution of the free flavin chromophore to the chromophore embedded in the protein. This enhancement is particularly evident when entangled photons are used as excitation light compared to classical light. Our results prove the potential of ETPA as a sensing technique for fluorescent proteins even for those whose classical TPA cross-section is small compared to well-known fluorescent proteins.


Subject(s)
Flavins/chemistry , Flavoproteins/chemistry , Light , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Photons , Dihydroorotate Dehydrogenase , Flavins/metabolism , Flavoproteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Quantum Theory , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...