Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Rep ; 26(11): 3160-3171.e3, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30865901

ABSTRACT

Single-cell RNA sequencing is a powerful tool by which to characterize the transcriptional profile of low-abundance cell types, but its application to the inner ear has been hampered by the bony labyrinth, tissue sparsity, and difficulty dissociating the ultra-rare cells of the membranous cochlea. Herein, we present a method to isolate individual inner hair cells (IHCs), outer hair cells (OHCs), and Deiters' cells (DCs) from the murine cochlea at any post-natal time point. We harvested more than 200 murine IHCs, OHCs, and DCs from post-natal days 15 (p15) to 228 (p228) and leveraged both short- and long-read single-cell RNA sequencing to profile transcript abundance and structure. Our results provide insights into the expression profiles of these cells and document an unappreciated complexity in isoform variety in deafness-associated genes. This refined view of transcription in the organ of Corti improves our understanding of the biology of hearing and deafness.


Subject(s)
Deafness/genetics , Organ of Corti/metabolism , Transcriptome , Animals , Female , Gene Expression Profiling , Male , Mice , Organ of Corti/growth & development , Single-Cell Analysis
2.
Sci Rep ; 7(1): 9609, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852025

ABSTRACT

Gene therapy for genetic deafness is a promising approach by which to prevent hearing loss or to restore hearing after loss has occurred. Although a variety of direct approaches to introduce viral particles into the inner ear have been described, presumed physiological barriers have heretofore precluded investigation of systemic gene delivery to the cochlea. In this study, we sought to characterize systemic delivery of a rAAV2/9 vector as a non-invasive means of cochlear transduction. In wild-type neonatal mice (postnatal day 0-1), we show that intravenous injection of rAAV2/9 carrying an eGFP-reporter gene results in binaural transduction of inner hair cells, spiral ganglion neurons and vestibular hair cells. Transduction efficiency increases in a dose-dependent manner. Inner hair cells are transduced in an apex-to-base gradient, with transduction reaching 96% in the apical turn. Hearing acuity in treated animals is unaltered at postnatal day 30. Transduction is influenced by viral serotype and age at injection, with less efficient cochlear transduction observed with systemic delivery of rAAV2/1 and in juvenile mice with rAAV2/9. Collectively, these data validate intravenous delivery of rAAV2/9 as a novel and atraumatic technique for inner ear transgene delivery in early postnatal mice.


Subject(s)
Cochlea/metabolism , Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , Administration, Intravenous , Animals , Animals, Newborn , Dependovirus/classification , Gene Expression , Genes, Reporter , Genetic Vectors/administration & dosage , Immunohistochemistry , Mice , Spiral Ganglion/metabolism , Transduction, Genetic , Transgenes
3.
Am J Hum Genet ; 98(6): 1101-1113, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27236922

ABSTRACT

Hearing impairment is the most common sensory deficit. It is frequently caused by the expression of an allele carrying a single dominant missense mutation. Herein, we show that a single intracochlear injection of an artificial microRNA carried in a viral vector can slow progression of hearing loss for up to 35 weeks in the Beethoven mouse, a murine model of non-syndromic human deafness caused by a dominant gain-of-function mutation in Tmc1 (transmembrane channel-like 1). This outcome is noteworthy because it demonstrates the feasibility of RNA-interference-mediated suppression of an endogenous deafness-causing allele to slow progression of hearing loss. Given that most autosomal-dominant non-syndromic hearing loss in humans is caused by this mechanism of action, microRNA-based therapeutics might be broadly applicable as a therapy for this type of deafness.


Subject(s)
Auditory Pathways , Hearing Loss/prevention & control , Membrane Proteins/physiology , MicroRNAs/genetics , Mutation, Missense/genetics , Animals , Dependovirus/genetics , Hearing Loss/etiology , Hearing Loss/pathology , Humans , Mechanotransduction, Cellular , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C3H , Mice, Knockout , MicroRNAs/administration & dosage , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...