Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 12(2): e0131322, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36719207

ABSTRACT

Mutants of the attenuated Bacillus anthracis (Sterne) strain 7702 that are resistant to phage AP50c have been previously described. Here, we report the draft genome assemblies of the parent strain, several phage-resistant derivatives, and mutants of genes in the pathways for synthesis and assembly of the S-layer.

2.
Front Public Health ; 10: 889973, 2022.
Article in English | MEDLINE | ID: mdl-35570946

ABSTRACT

Real-time reverse transcription polymerase chain reaction (RT-PCR) assays are the most widely used molecular tests for the detection of SARS-CoV-2 and diagnosis of COVID-19 in clinical samples. PCR assays target unique genomic RNA regions to identify SARS-CoV-2 with high sensitivity and specificity. In general, assay development incorporates the whole genome sequences available at design time to be inclusive of all target species and exclusive of near neighbors. However, rapid accumulation of mutations in viral genomes during sustained growth in the population can result in signature erosion and assay failures, creating situational blind spots during a pandemic. In this study, we analyzed the signatures of 43 PCR assays distributed across the genome against over 1.6 million SARS-CoV-2 sequences. We present evidence of significant signature erosion emerging in just two assays due to mutations, while adequate sequence identity was preserved in the other 41 assays. Failure of more than one assay against a given variant sequence was rare and mostly occurred in the two assays noted to have signature erosion. Assays tended to be designed in regions with statistically higher mutations rates. in silico analyses over time can provide insights into mutation trends and alert users to the emergence of novel variants that are present in the population at low proportions before they become dominant. Such routine assessment can also potentially highlight false negatives in test samples that may be indicative of mutations having functional consequences in the form of vaccine and therapeutic failures. This study highlights the importance of whole genome sequencing and expanded real-time monitoring of diagnostic PCR assays during a pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sequence Alignment
3.
Front Public Health ; 10: 852083, 2022.
Article in English | MEDLINE | ID: mdl-35493369

ABSTRACT

Polymerase chain reaction (PCR) remains the gold standard in disease diagnostics due to its extreme sensitivity and specificity. However, PCR tests are expensive and complex, require skilled personnel and specialized equipment to conduct the tests, and have long turnaround times. On the other hand, lateral flow immunoassay-based antigen tests are rapid, relatively inexpensive, and can be performed by untrained personnel at the point of care or even in the home. However, rapid antigen tests are less sensitive than PCR since they lack the inherent target amplification of PCR. It has been argued that rapid antigen tests are better indicators of infection in public health decision-making processes to test, trace, and isolate infected people to curtail further transmission. Hence, there is a critical need to increase the sensitivity of rapid antigen tests and create innovative solutions to achieve that goal. Herein, we report the development of a low-cost diagnostic platform, enabling rapid detection of SARS-CoV-2 under field or at-home conditions. This platform (Halo™) is a small, highly accurate, consumer-friendly diagnostic reader paired with fluorescently labeled lateral flow assays and custom software for collection and reporting of results. The focus of this study is to compare the analytical performance of HaloTM against comparable tests that use either colloidal gold nanoparticles or fluorescence-based reporters in simulated nasal matrix and not in clinical samples. Live virus data has demonstrated limit of detection performance of 1.9 TCID50/test in simulated nasal matrix for the delta variant, suggesting that single-assay detection of asymptomatic SARS-CoV-2 infections may be feasible. Performance of the system against all tested SARS CoV-2 virus variants showed comparable sensitivities indicating mutations in SARS-CoV-2 variants do not negatively impact the assay.


Subject(s)
COVID-19 , Metal Nanoparticles , COVID-19/diagnosis , Gold , Humans , Proof of Concept Study , SARS-CoV-2
4.
ACS Omega ; 6(35): 22700-22708, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34514241

ABSTRACT

Lateral flow immunoassays (LFIs) are simple, point-of-care diagnostic devices used for detecting biological agents or other analytes of interest in a sample. LFIs are predominantly singleplex assays, interrogating one target analyte at a time. There is a need for multiplex LFI devices, e.g., a syndromic panel to differentiate pathogens causing diseases exhibiting similar symptoms. Multiplex LFI devices would be especially valuable in instances where sample quantity is limiting and reducing assay time and costs is critical. There are limitations to the design parameters and performance characteristics of a multiplex LFI assay with many horizontal test lines due to constraints in capillary flow dynamics. To address some of the performance issues, we have developed a spot array multiplex LFI using Braille format (hence called Blind Spot) and a sensor, MACAW (Modular Automated Colorimetric Analyses Widget), that can analyze and interpret the results. As a proof of concept, we created a multiplex toxin panel, for detecting three toxins, using two letter codes for each. The results indicated that the six-plex, triple toxin assay performs as well as singleplex assays. The sensor-based calls are better compared to human interpretation in discriminating and interpreting ambiguous test results correctly especially at lower antigen concentrations and from strips with blemishes.

5.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33303672

ABSTRACT

The genome of Francisella tularensis live vaccine strain NR-28537 was sequenced by a hybrid approach utilizing an Oxford Nanopore Technologies R9 flow cell and an Illumina MiSeq platform. De novo assembly of the resulting long and short reads produced a single-contig whole-genome sequence.

6.
Microbiol Resour Announc ; 9(15)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32273351

ABSTRACT

Mutants of an attenuated Bacillus anthracis (ΔANR) strain conferring increasing levels of ciprofloxacin resistance have been described. Here, we report the draft genome sequences of the parent strain (ΔANR pXO1-, pXO2-) and its derivatives conferring low (step 1; 0.5 µg/ml), medium (step 2; 8 to 16 µg/ml), and high (step 3; 32 to 64 µg/ml) levels of ciprofloxacin resistance.

7.
Emerg Infect Dis ; 24(4)2018 04.
Article in English | MEDLINE | ID: mdl-29553922

ABSTRACT

The revelation in May 2015 of the shipment of γ irradiation-inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.


Subject(s)
Anthrax/microbiology , Bacillus anthracis/physiology , Bacillus anthracis/radiation effects , Radiation , Spores, Bacterial/radiation effects , Animals , Bacillus anthracis/virology , Bacterial Toxins/genetics , Female , Gene Knockdown Techniques , Humans , Mice , Mutagenesis, Insertional , Plasmids/genetics , Recombination, Genetic , Reproducibility of Results , Virulence , Whole Genome Sequencing
8.
Viruses ; 7(6): 3130-54, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26090727

ABSTRACT

Genome sequence analyses of the 2014 Ebola Virus (EBOV) isolates revealed a potential problem with the diagnostic assays currently in use; i.e., drifting genomic profiles of the virus may affect the sensitivity or even produce false-negative results. We evaluated signature erosion in ebolavirus molecular assays using an in silico approach and found frequent potential false-negative and false-positive results. We further empirically evaluated many EBOV assays, under real time PCR conditions using EBOV Kikwit (1995) and Makona (2014) RNA templates. These results revealed differences in performance between assays but were comparable between the old and new EBOV templates. Using a whole genome approach and a novel algorithm, termed BioVelocity, we identified new signatures that are unique to each of EBOV, Sudan virus (SUDV), and Reston virus (RESTV). Interestingly, many of the current assay signatures do not fall within these regions, indicating a potential drawback in the past assay design strategies. The new signatures identified in this study may be evaluated with real-time reverse transcription PCR (rRT-PCR) assay development and validation. In addition, we discuss regulatory implications and timely availability to impact a rapidly evolving outbreak using existing but perhaps less than optimal assays versus redesign these assays for addressing genomic changes.


Subject(s)
Ebolavirus/genetics , Genetic Drift , Genome, Viral , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/virology , Molecular Diagnostic Techniques/methods , Diagnostic Errors , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...