Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Appl Clin Med Phys ; 24(11): e14178, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37819022

ABSTRACT

PURPOSE: Liver cirrhosis disrupts liver function and tissue perfusion, detectable by magnetic resonance imaging (MRI). Assessing liver function at the voxel level with 13-b value intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) could aid in radiation therapy liver-sparing treatment for patients with early impairment. This study aimed to evaluate the feasibility of IVIM-DWI for liver function assessment and correlate it with other multiparametric (mp) MRI methods at the voxel level. METHOD: This study investigates the variability of apparent diffusion coefficient (ADC) derived from 13-b value IVIM-DWI and B1-corrected dual flip angle (DFA) T1 mapping. Experiments were conducted in-vitro with QIBA and NIST phantoms and in 10 healthy volunteers for IVIM-DWI. Additionally, 12 patients underwent an mp-MRI examination. The imaging protocol included a 13-b value IVIM-DWI sequence for generating IVIM parametric maps. B1-corrected DFA T1 pulse sequence was used for generating T1 maps, and Gadoxatate low temporal resolution dynamic contrast-enhanced (LTR-DCE) MRI was used for generating the Hepatic extraction fraction (HEF) map. The Mann-Whitney U test was employed to compare IVIM-DWI parameters (Pure Diffusion, Dslow ; Pseudo diffusion, Dfast ; and Perfusion Fraction, Fp ) between the healthy volunteer and patient groups. Furthermore, in the patient group, statistical correlations were assessed at a voxel level between LTR-DCE MRI-derived HEF, T1 post-Gadoxetate administration, ΔT1%, and various IVIM parameters using Pearson correlation. RESULTS: For-vitro measurements, the maximum coefficient of variation of the ADC and T1 parameters was 12.4% and 16.1%, respectively. The results also showed that Fp and Dfast were able to distinguish between healthy liver function and mild liver function impairment at the global level, with p = 0.002 for Fp and p < 0.001 for Dfast . Within the patient group, these parameters also exhibited a moderate correlation with HEF at the voxel level. CONCLUSION: Overall, the study highlighted the potential of Dfast and Fp for detecting liver function impairment at both global and pixel levels.


Subject(s)
Liver Cirrhosis , Humans , Pilot Projects , Bayes Theorem , Motion , Liver Cirrhosis/diagnostic imaging
2.
J Med Radiat Sci ; 70(4): 509-517, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37421243

ABSTRACT

INTRODUCTION: Magnetic resonance imaging (MRI) is being increasingly used to improve radiation therapy planning by allowing visualisation of organs at risk that cannot be well-defined on computed tomography (CT). Diagnostic sequences are increasingly being adapted for radiation therapy planning, such as the use of heavily T2-weighted 3D SPACE (Sampling Perfection with Application optimised Contrasts using different flip angle Evolution) sequence for cranial nerve identification in head and neck tumour treatment planning. METHODS: A 3D isotropic T2 SPACE sequence used for cranial nerve identification was adapted for radiation therapy purposes. Distortion was minimised using a spin-echo-based sequence, 3D distortion correction, isocentre scanning and an increased readout bandwidth. Radiation therapy positioning was accounted for by utilising two small flex, 4-channel coils. The protocol was validated for cranial nerve identification in clinical applications and distortion minimisation using an MRI QA phantom. RESULTS: Normal anatomy of the cranial nerves CI-CIX, were presented, along with a selection of clinical applications and abnormal anatomy. The usefulness of cranial nerve identification is discussed for several case studies, particularly in proximity to tumours extending into the base of skull region. In-house testing validated that higher bandwidths of 600 Hz resulted in minimal displacement well below 1 mm. CONCLUSION: The use of MRI for radiation therapy planning allows for greater individualisation and prediction of patient outcomes. Dose reduction to cranial nerves can decrease late side effects such as cranial neuropathy. In addition to current applications, future directions include further applications of this technology for radiation therapy treatments.


Subject(s)
Cranial Nerves , Magnetic Resonance Imaging , Humans , Cranial Nerves/diagnostic imaging , Cranial Nerves/anatomy & histology , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging
3.
J Am Vet Med Assoc ; 261(5): 705-712, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36735504

ABSTRACT

OBJECTIVE: To describe the clinical presentation and outcome in dogs diagnosed with Trypanosoma cruzi infection in nonendemic areas and to survey veterinary cardiologists in North America for Chagas disease awareness. ANIMALS: 12 client-owned dogs; 83 respondents from a veterinary cardiology listserv. PROCEDURES: A retrospective, multicenter medical records review to identify dogs diagnosed with American trypanosomiasis between December 2010 and December 2020. An anonymous online survey was conducted August 9 to 22, 2022. RESULTS: Diagnosis was made using indirect fluorescent antibody titer (n = 9), quantitative PCR assay (1), or postmortem histopathology (2). Time spent in Texas was < 1 year (n = 7) or 2 to 8 years (5). Time in nonendemic areas prior to diagnosis was < 1 year (n = 10) and > 3 years (2). Eleven had cardiac abnormalities. Of the 12 dogs, 5 had died unexpectedly (range, 1 to 108 days after diagnosis), 4 were still alive at last follow-up (range, 60 to 369 days after diagnosis), 2 were euthanized because of heart disease (1 and 98 days after diagnosis), and 1 was lost to follow-up. Survey results were obtained from 83 cardiologists in North America, of which the self-reported knowledge about Chagas disease was limited in 49% (41/83) and 69% (57/83) expressed interest in learning resources. CLINICAL RELEVANCE: Results highlight the potential for encountering dogs with T cruzi infection in nonendemic areas and need for raising awareness about Chagas disease in North America.


Subject(s)
Chagas Disease , Dog Diseases , Trypanosoma cruzi , Animals , Dogs , Retrospective Studies , Chagas Disease/diagnosis , Chagas Disease/epidemiology , Chagas Disease/veterinary , Texas , Surveys and Questionnaires , Dog Diseases/diagnosis , Dog Diseases/epidemiology
4.
J Med Radiat Sci ; 70 Suppl 2: 48-58, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36088635

ABSTRACT

INTRODUCTION: In this study, we aimed to investigate the feasibility of gadoxetate low-temporal resolution (LTR) DCE-MRI for voxel-based hepatic extraction fraction (HEF) quantification for liver sparing radiotherapy using a deconvolution analysis (DA) method. METHODS: The accuracy and consistency of the deconvolution implementation in estimating liver function was first assessed using simulation data. Then, the method was applied to DCE-MRI data collected retrospectively from 64 patients (25 normal liver function and 39 cirrhotic patients) to generate HEF maps. The normal liver function patient data were used to measure the variability of liver function quantification. Next, a correlation between HEF and ALBI score (a new model for assessing the severity of liver dysfunction) was assessed using Pearson's correlation. Differences in HEF between Child-Pugh score classifications were assessed for significance using the Kruskal-Wallis test for all patient groups and Mann-Whitney U-test for inter-groups. A statistical significance was considered at a P-value <0.05 in all tests. RESULTS: The results showed that the implemented method accurately reproduced simulated liver function; root-mean-square error between estimated and simulated liver response functions was 0.003, and the coefficient-of-variance of HEF was <20%. HEF correlation with ALBI score was r = -0.517, P < 0.0001, and HEF was significantly decreased in the cirrhotic patients compared to normal patients (P < 0.0001). Also, HEF in Child-Pugh B/C was significantly lower than in Child-Pugh A (P = 0.024). CONCLUSION: The study demonstrated the feasibility of gadoxetate LTR-DCE MRI for voxel-based liver function quantification using DA. HEF could distinguish between different grades of liver function impairment and could potentially be used for functional guidance in radiotherapy.


Subject(s)
Liver Cirrhosis , Liver Neoplasms , Humans , Retrospective Studies , Liver Cirrhosis/diagnostic imaging , Magnetic Resonance Imaging , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy
5.
J Cell Biol ; 221(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35511089

ABSTRACT

Non-canonical autophagy is a key cellular pathway in immunity, cancer, and neurodegeneration, characterized by conjugation of ATG8 to endolysosomal single membranes (CASM). CASM is activated by engulfment (endocytosis, phagocytosis), agonists (STING, TRPML1), and infection (influenza), dependent on K490 in the ATG16L1 WD40-domain. However, factors associated with non-canonical ATG16L1 recruitment and CASM induction remain unknown. Here, using pharmacological inhibitors, we investigate a role for V-ATPase during non-canonical autophagy. We report that increased V0-V1 engagement is associated with, and sufficient for, CASM activation. Upon V0-V1 binding, V-ATPase recruits ATG16L1, via K490, during LC3-associated phagocytosis (LAP), STING- and drug-induced CASM, indicating a common mechanism. Furthermore, during LAP, key molecular players, including NADPH oxidase/ROS, converge on V-ATPase. Finally, we show that LAP is sensitive to Salmonella SopF, which disrupts the V-ATPase-ATG16L1 axis and provide evidence that CASM contributes to the Salmonella host response. Together, these data identify V-ATPase as a universal regulator of CASM and indicate that SopF evolved in part to evade non-canonical autophagy.


Subject(s)
Autophagy-Related Proteins , Autophagy , Microtubule-Associated Proteins , Phagocytosis , Vacuolar Proton-Translocating ATPases , Autophagy-Related Proteins/metabolism , Cell Line , Humans , Microtubule-Associated Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
6.
Environ Sci Pollut Res Int ; 29(36): 55278-55292, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35318600

ABSTRACT

Human remains have been interred in burial grounds since historic times. Although the re-use of graveyards differs from one country, region or time period to another, over time, graveyard soil may become contaminated or enriched with heavy metal elements. This paper presents heavy metal element soil analysis from two UK church graveyard study sites with contrasting necrosols, but similar burial densities and known burial ages dating back to the sixteenth century and some possibly older than 1,000 years. Portable X-ray fluorescence element laboratory-based analyses were undertaken on surface and near-surface soil pellets. Results show elevated levels of Fe, Pb, Mn, Cr, Cu, Zn and Ca in both necrosols when compared with background values. Element concentration anomalies remained consistently higher than background samples down to 2 m, but reduced with distance away from church buildings. Element concentration anomalies are higher in the clay-rich necrosol than in sandy necrosol. Study result implications suggest that long-used necrosols are likely to be more contaminated with heavy metal elements than similar soil outside graveyards with implications for burial grounds management, adjacent populations and where burial grounds have been deconsecrated and turned to residential dwellings.


Subject(s)
Metals, Heavy , Soil Pollutants , Cemeteries , Environmental Monitoring/methods , Humans , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Spectrometry, X-Ray Emission/methods , X-Rays
7.
Clin Cancer Res ; 28(7): 1446-1459, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35078861

ABSTRACT

PURPOSE: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. EXPERIMENTAL DESIGN: Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). RESULTS: Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucose-derived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. CONCLUSIONS: Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK-mediated aggressive disease phenotypes.


Subject(s)
DNA-Activated Protein Kinase , Prostatic Neoplasms, Castration-Resistant , DNA , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Glycolysis , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Proteomics , Pyruvate Kinase/metabolism
8.
Ann N Y Acad Sci ; 1510(1): 79-99, 2022 04.
Article in English | MEDLINE | ID: mdl-35000205

ABSTRACT

Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Autophagy/physiology , Humans , Organelles , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Proteolysis , Ubiquitin/metabolism
9.
Magn Reson Med ; 87(3): 1289-1300, 2022 03.
Article in English | MEDLINE | ID: mdl-34687073

ABSTRACT

PURPOSE: Quantitative susceptibility mapping (QSM) estimates the spatial distribution of tissue magnetic susceptibilities from the phase of a gradient-echo signal. QSM algorithms require a signal mask to delineate regions with reliable phase for subsequent susceptibility estimation. Existing masking techniques used in QSM have limitations that introduce artifacts, exclude anatomical detail, and rely on parameter tuning and anatomical priors that narrow their application. Here, a robust masking and reconstruction procedure is presented to overcome these limitations and enable automated QSM processing. Moreover, this method is integrated within an open-source software framework: QSMxT. METHODS: A robust masking technique that automatically separates reliable from less reliable phase regions was developed and combined with a two-pass reconstruction procedure that operates on the separated sources before combination, extracting more information and suppressing streaking artifacts. RESULTS: Compared with standard masking and reconstruction procedures, the two-pass inversion reduces streaking artifacts caused by unreliable phase and high dynamic ranges of susceptibility sources. It is also robust across a range of acquisitions at 3 T in volunteers and phantoms, at 7 T in tumor patients, and in an in silico head phantom, with significant artifact and error reductions, greater anatomical detail, and minimal parameter tuning. CONCLUSION: The two-pass masking and reconstruction procedure separates reliable from less reliable phase regions, enabling a more accurate QSM reconstruction that mitigates artifacts, operates without anatomical priors, and requires minimal parameter tuning. The technique and its integration within QSMxT makes QSM processing more accessible and robust to streaking artifacts.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Brain Mapping , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging
10.
Sci Adv ; 7(40): eabj2485, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34597140

ABSTRACT

Adaptive changes in lysosomal capacity are driven by the transcription factors TFEB and TFE3 in response to increased autophagic flux and endolysosomal stress, yet the molecular details of their activation are unclear. LC3 and GABARAP members of the ATG8 protein family are required for selective autophagy and sensing perturbation within the endolysosomal system. Here, we show that during the conjugation of ATG8 to single membranes (CASM), Parkin-dependent mitophagy, and Salmonella-induced xenophagy, the membrane conjugation of GABARAP, but not LC3, is required for activation of TFEB/TFE3 to control lysosomal capacity. GABARAP directly binds to a previously unidentified LC3-interacting motif (LIR) in the FLCN/FNIP tumor suppressor complex and mediates sequestration to GABARAP-conjugated membrane compartments. This disrupts FLCN/FNIP GAP function toward RagC/D, resulting in impaired substrate-specific mTOR-dependent phosphorylation of TFEB. Thus, the GABARAP-FLCN/FNIP-TFEB axis serves as a molecular sensor that coordinates lysosomal homeostasis with perturbations and cargo flux within the autophagy-lysosomal network.

11.
J Biomed Sci ; 28(1): 54, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34281540

ABSTRACT

BACKGROUND: Current multiparametric MRI (mp-MRI) in routine clinical practice has poor-to-moderate diagnostic performance for transition zone prostate cancer. The aim of this study was to evaluate the potential diagnostic performance of novel 1H magnetic resonance spectroscopic imaging (MRSI) using a semi-localized adiabatic selective refocusing (sLASER) sequence with gradient offset independent adiabaticity (GOIA) pulses in addition to the routine mp-MRI, including T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and quantitative dynamic contrast enhancement (DCE) for transition zone prostate cancer detection, localization and grading. METHODS: Forty-one transition zone prostate cancer patients underwent mp-MRI with an external phased-array coil. Normal and cancer regions were delineated by two radiologists and divided into low-risk, intermediate-risk, and high-risk categories based on TRUS guided biopsy results. Support vector machine models were built using different clinically applicable combinations of T2WI, DWI, DCE, and MRSI. The diagnostic performance of each model in cancer detection was evaluated using the area under curve (AUC) of the receiver operating characteristic diagram. Then accuracy, sensitivity and specificity of each model were calculated. Furthermore, the correlation of mp-MRI parameters with low-risk, intermediate-risk and high-risk cancers were calculated using the Spearman correlation coefficient. RESULTS: The addition of MRSI to T2WI + DWI and T2WI + DWI + DCE improved the accuracy, sensitivity and specificity for cancer detection. The best performance was achieved with T2WI + DWI + MRSI where the addition of MRSI improved the AUC, accuracy, sensitivity and specificity from 0.86 to 0.99, 0.83 to 0.96, 0.80 to 0.95, and 0.85 to 0.97 respectively. The (choline + spermine + creatine)/citrate ratio of MRSI showed the highest correlation with cancer risk groups (r = 0.64, p < 0.01). CONCLUSION: The inclusion of GOIA-sLASER MRSI into conventional mp-MRI significantly improves the diagnostic accuracy of the detection and aggressiveness assessment of transition zone prostate cancer.


Subject(s)
Magnetic Resonance Spectroscopy/therapeutic use , Multiparametric Magnetic Resonance Imaging/statistics & numerical data , Prostatic Neoplasms/diagnosis , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Prostatic Neoplasms/diagnostic imaging
12.
J Med Radiat Sci ; 68(3): 282-288, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34028976

ABSTRACT

INTRODUCTION: The prostatic urethra is an organ at risk for prostate radiotherapy with genitourinary toxicities a common side effect. Many external beam radiation therapy protocols call for urethral sparing, and with modulated radiotherapy techniques, the radiation dose distribution can be controlled so that maximum doses do not fall within the prostatic urethral volume. Whilst traditional diagnostic MRI sequences provide excellent delineation of the prostate, uncertainty often remains as to the true path of the urethra within the gland. This study aims to assess if a high-resolution isotropic 3D T2 MRI series can reduce inter-observer variability in urethral delineation for radiotherapy planning. METHODS: Five independent observers contoured the prostatic urethra for ten patients on three data sets; a 2 mm axial CT, a diagnostic 3 mm axial T2 TSE MRI and a 0.9 mm isotropic 3D T2 SPACE MRI. The observers were blinded from each other's contours. A Dice Similarity Coefficient (DSC) score was calculated using the intersection and union of the five observer contours vs an expert reference contour for each data set. RESULTS: The mean DSC of the observer vs reference contours was 0.47 for CT, 0.62 for T2 TSE and 0.78 for T2 SPACE (P < 0.001). CONCLUSIONS: The introduction of a 0.9 mm isotropic 3D T2 SPACE MRI for treatment planning provides improved urethral visualisation and can lead to a significant reduction in inter-observer variation in prostatic urethral contouring.


Subject(s)
Prostatic Neoplasms , Urethra , Humans , Magnetic Resonance Imaging , Male , Observer Variation , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Urethra/diagnostic imaging
13.
Phys Imaging Radiat Oncol ; 17: 32-35, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33898775

ABSTRACT

Radiotherapy planning for lung cancer typically requires both 3D and 4D Computed Tomography (CT) to account for respiratory related movement. 4D Magnetic Resonance Imaging (MRI) with self-navigation offers a potential alternative with greater reliability in patients with irregular breathing patterns and improved soft tissue contrast. In this study 4D-CT and a 4D-MRI Radial Volumetric Interpolated Breath-hold Examination (VIBE) sequence was evaluated with a 4D phantom and 13 patient respiratory patterns, simulating tumour motion. Quantification of motion related tumour displacement in 4D-MRI and 4D-CT found no statistically significant difference in mean motion range. The results demonstrated the potential viability of 4D-MRI for lung cancer treatment planning.

14.
J Orthop Res ; 39(5): 1113-1122, 2021 05.
Article in English | MEDLINE | ID: mdl-32757272

ABSTRACT

Anterior cruciate ligament reconstruction (ACLR) incurs a high risk of posttraumatic knee osteoarthritis (PTOA). Aberrant gait biomechanics contribute to PTOA and are attributable in part to quadriceps dysfunction. Vibration improves quadriceps function following ACLR, but its effects on gait biomechanics are unknown. The purpose of this study was to evaluate the effects of whole-body vibration (WBV) and local muscle vibration (LMV) on gait biomechanics in individuals with ACLR. Seventy-five volunteers (time since ACLR 27 ± 16 months) were randomized to WBV, LMV, or Control interventions. Walking biomechanics were assessed prior to and following a single exposure to the interventions. Outcomes included pre-post change scores in the ACLR limb for the peak vertical ground reaction force (vGRF) and its loading rate, peak internal knee extension (KEM) and abduction moments, and peak knee flexion and varus angles. LMV produced a significant decrease in the vGRF loading rate (-3.6 BW/s) that was greater than the changes in the WBV (-0.3 BW/s) and Control (0.5 BW/s) groups. Additionally, WBV produced an increase in the peak KEM (0.27% BW × Ht) that was greater than the change in the Control group (-0.17% BW × Ht) but not the LMV group (0.01% BW × Ht). Lower KEM and greater loading rates have been linked to declines in joint health following ACLR. WBV acutely increased the peak KEM and LMV decreased loading rates. These data suggest that vibration has the potential to mitigate aberrant gait biomechanics, and may represent an effective approach for reducing PTOA risk following ACLR.


Subject(s)
Anterior Cruciate Ligament Injuries/complications , Gait/physiology , Osteoarthritis, Knee/prevention & control , Vibration/therapeutic use , Adolescent , Adult , Biomechanical Phenomena , Female , Humans , Male , Osteoarthritis, Knee/physiopathology , Young Adult
15.
PLoS One ; 15(8): e0235551, 2020.
Article in English | MEDLINE | ID: mdl-32833964

ABSTRACT

VPS34 is a key regulator of endomembrane dynamics and cargo trafficking, and is essential in cultured cell lines and in mice. To better characterize the role of VPS34 in cell growth, we performed unbiased cell line profiling studies with the selective VPS34 inhibitor PIK-III and identified RKO as a VPS34-dependent cellular model. Pooled CRISPR screen in the presence of PIK-III revealed endolysosomal genes as genetic suppressors. Dissecting VPS34-dependent alterations with transcriptional profiling, we found the induction of hypoxia response and cholesterol biosynthesis as key signatures. Mechanistically, acute VPS34 inhibition enhanced lysosomal degradation of transferrin and low-density lipoprotein receptors leading to impaired iron and cholesterol uptake. Excess soluble iron, but not cholesterol, was sufficient to partially rescue the effects of VPS34 inhibition on mitochondrial respiration and cell growth, indicating that iron limitation is the primary driver of VPS34-dependency in RKO cells. Loss of RAB7A, an endolysosomal marker and top suppressor in our genetic screen, blocked transferrin receptor degradation, restored iron homeostasis and reversed the growth defect as well as metabolic alterations due to VPS34 inhibition. Altogether, our findings suggest that impaired iron mobilization via the VPS34-RAB7A axis drive VPS34-dependence in certain cancer cells.


Subject(s)
Class III Phosphatidylinositol 3-Kinases/metabolism , Iron/metabolism , Neoplasms/metabolism , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Cholesterol/biosynthesis , Cholesterol/genetics , Class III Phosphatidylinositol 3-Kinases/genetics , Endosomes/metabolism , HEK293 Cells , Humans , Lysosomes/metabolism , Receptors, LDL/metabolism , Transferrin/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
16.
J Athl Train ; 55(7): 717-723, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32432902

ABSTRACT

CONTEXT: Anterior cruciate ligament (ACL) injury risk can be assessed from landing biomechanics. Greater hamstrings stiffness is associated with a landing-biomechanics profile consistent with less ACL loading but is difficult to assess in the clinical setting. Eccentric hamstrings strength can be easily evaluated by clinicians and may provide a surrogate measure for hamstrings stiffness. OBJECTIVE: To examine associations among eccentric hamstrings strength, hamstrings stiffness, and landing biomechanics linked to ACL injury risk. DESIGN: Cross-sectional study. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: A total of 34 uninjured, physically active participants (22 women, 12 men; age = 20.2 ± 1.6 years, height = 171.5 ± 9.7 cm, mass = 67.1 ± 12.7 kg). INTERVENTION(S): We collected eccentric hamstrings strength, active hamstrings stiffness, and double- and single-legged landing biomechanics during a single session. MAIN OUTCOME MEASURE(S): Bivariate associations were conducted between eccentric hamstrings strength and hamstrings stiffness, vertical ground reaction force, internal knee-extension moment, internal knee-varus moment, anterior tibial shear force, knee sagittal-plane angle at initial ground contact, peak knee-flexion angle, knee frontal-plane angle at initial ground contact, peak knee-valgus angle, and knee-flexion displacement using Pearson product moment correlations or Spearman rank-order correlations. RESULTS: We observed no association between hamstrings stiffness and eccentric hamstrings strength (r = 0.029, P = .44). We also found no association between hamstrings stiffness and landing biomechanics. However, greater peak eccentric strength was associated with less vertical ground reaction force in both the double-legged (r = -0.331, P = .03) and single-legged (r = -0.418, P = .01) landing conditions and with less internal knee-varus moment in the single-legged landing condition (r = -0.326, P = .04). CONCLUSIONS: Eccentric hamstrings strength was associated with less vertical ground reaction force during both landing tasks and less internal knee-varus moment during the single-legged landing but was not an acceptable clinical estimate of active hamstrings stiffness.


Subject(s)
Anterior Cruciate Ligament Injuries , Athletic Injuries , Hamstring Muscles , Knee Joint , Muscle Spasticity , Muscle Strength , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/prevention & control , Athletic Injuries/physiopathology , Athletic Injuries/prevention & control , Biomechanical Phenomena , Cross-Sectional Studies , Female , Hamstring Muscles/physiology , Hamstring Muscles/physiopathology , Humans , Knee Joint/physiology , Knee Joint/physiopathology , Male , Young Adult
17.
J Orthop Res ; 38(3): 620-628, 2020 03.
Article in English | MEDLINE | ID: mdl-31608488

ABSTRACT

Osteoarthritis is common following anterior cruciate ligament reconstruction (ALCR), and aberrant gait biomechanics are considered a primary contributor. Somatosensory dysfunction potentially alters gait biomechanics, but this association is unclear. Therefore, the purposes of this investigation were to compare somatosensory function between limbs and evaluate associations between somatosensory function and gait biomechanics linked to osteoarthritis development in individuals with ALCR. Seventy-three volunteers with ALCR participated. Gait biomechanics (peak vertical ground reaction force magnitude and loading rate, peak internal knee extension and valgus moments, peak knee flexion and varus angles, and quadriceps/hamstrings co-activation) were assessed as subjects walked at their preferred speed. The somatosensory function was assessed via joint position sense error (knee flexion) and vibratory perception threshold (femoral epicondyles, malleoli, and first metatarsal). Though somatosensory function did not differ between the ACLR and contralateral limbs, poorer joint position sense in the ACLR limb was associated with lower loading rates and internal knee extension moments, and greater co-activation. Poorer vibratory perception at the medial and lateral malleoli and first metatarsal head in the ACLR limb was associated with lower loading rates, greater internal knee valgus moments and varus angles, and greater co-activation. Poorer vibratory perception at the medial malleolus and first metatarsal head in the contralateral limb was associated with greater peak knee varus angles and internal knee valgus moments. These results suggest that future research evaluating rehabilitation approaches for improving somatosensory function is warranted as a potential approach for restoring normal gait biomechanics and reducing osteoarthritis risk. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:620-628, 2020.


Subject(s)
Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Reconstruction/rehabilitation , Gait/physiology , Knee/physiology , Adolescent , Adult , Anterior Cruciate Ligament Injuries/surgery , Biomechanical Phenomena , Cartilage , Cross-Sectional Studies , Electromyography , Female , Hamstring Muscles/physiology , Humans , Knee Joint/physiology , Male , Osteoarthritis, Knee/physiopathology , Proprioception , Quadriceps Muscle/physiopathology , Rehabilitation/methods , Risk , Vibration , Walking , Young Adult
18.
Clin Cancer Res ; 25(18): 5608-5622, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31266829

ABSTRACT

PURPOSE: Protein kinases are known to play a prominent role in oncogenic progression across multiple cancer subtypes, yet their role in prostate cancer progression remains underexplored. The purpose of this study was to identify kinases that drive prostate cancer progression.Experimental Design: To discover kinases that drive prostate cancer progression, we investigated the association between gene expression of all known kinases and long-term clinical outcomes in tumor samples from 545 patients with high-risk disease. We evaluated the impact of genetic and pharmacologic inhibition of the most significant kinase associated with metastatic progression in vitro and in vivo. RESULTS: DNA-dependent protein kinase (DNAPK) was identified as the most significant kinase associated with metastatic progression in high-risk prostate cancer. Inhibition of DNAPK suppressed the growth of both AR-dependent and AR-independent prostate cancer cells. Gene set enrichment analysis nominated Wnt as the top pathway associated with DNAPK. We found that DNAPK interacts with the Wnt transcription factor LEF1 and is critical for LEF1-mediated transcription. CONCLUSIONS: Our data show that DNAPK drives prostate cancer progression through transcriptional regulation of Wnt signaling and is an attractive therapeutic target in aggressive prostate cancer.


Subject(s)
DNA-Activated Protein Kinase/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Transcription, Genetic , Wnt Signaling Pathway , Animals , Biomarkers, Tumor , Cell Line, Tumor , Cell Movement , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/genetics , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Gene Knockdown Techniques , Heterografts , Humans , Male , Mice , Neoplasm Metastasis , Phenotype , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Protein Binding , RNA, Small Interfering/genetics
19.
Clin Cancer Res ; 25(18): 5623-5637, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31266833

ABSTRACT

PURPOSE: DNA-dependent protein kinase catalytic subunit (DNA-PK) is a pleiotropic kinase involved in DNA repair and transcriptional regulation. DNA-PK is deregulated in selected cancer types and is strongly associated with poor outcome. The underlying mechanisms by which DNA-PK promotes aggressive tumor phenotypes are not well understood. Here, unbiased molecular investigation in clinically relevant tumor models reveals novel functions of DNA-PK in cancer.Experimental Design: DNA-PK function was modulated using both genetic and pharmacologic methods in a series of in vitro models, in vivo xenografts, and patient-derived explants (PDE), and the impact on the downstream signaling and cellular cancer phenotypes was discerned. Data obtained were used to develop novel strategies for combinatorial targeting of DNA-PK and hormone signaling pathways. RESULTS: Key findings reveal that (i) DNA-PK regulates tumor cell proliferation; (ii) pharmacologic targeting of DNA-PK suppresses tumor growth both in vitro, in vivo, and ex vivo; (iii) DNA-PK transcriptionally regulates the known DNA-PK-mediated functions as well as novel cancer-related pathways that promote tumor growth; (iv) dual targeting of DNA-PK/TOR kinase (TORK) transcriptionally upregulates androgen signaling, which can be mitigated using the androgen receptor (AR) antagonist enzalutamide; (v) cotargeting AR and DNA-PK/TORK leads to the expansion of antitumor effects, uncovering the modulation of novel, highly relevant protumorigenic cancer pathways; and (viii) cotargeting DNA-PK/TORK and AR has cooperative growth inhibitory effects in vitro and in vivo. CONCLUSIONS: These findings uncovered novel DNA-PK transcriptional regulatory functions and led to the development of a combinatorial therapeutic strategy for patients with advanced prostate cancer, currently being tested in the clinical setting.


Subject(s)
DNA-Activated Protein Kinase/metabolism , Neoplasms/metabolism , Androgen Receptor Antagonists/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptors, Androgen/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Xenograft Model Antitumor Assays
20.
Clin Biomech (Bristol, Avon) ; 67: 153-159, 2019 07.
Article in English | MEDLINE | ID: mdl-31121428

ABSTRACT

BACKGROUND: Heightened co-activation of the quadriceps and hamstrings has been reported following anterior cruciate ligament reconstruction during various tasks, and may contribute to post-traumatic osteoarthritis risk. However, it is unclear if this phenomenon occurs during walking or how co-activation influences gait biomechanics linked to changes in joint health. METHODS: Co-activation and gait biomechanics were assessed in 50 individuals with ACLR and 25 healthy controls. Biomechanical outcomes included knee flexion displacement, peak vertical ground reaction force magnitude and rate, peak internal knee extension and valgus moments and rates, sagittal knee stiffness, and the heelstrike transient. Co-activation was calculated for the flexors and extensors collectively (i.e. composite), the medial musculature, and the lateral musculature. FINDINGS: Composite co-activation was greater in the ACLR limb compared to the contralateral limb and the control cohort during the preparatory and heelstrike phases of gait, and co-activation of the medial musculature was greater in the ACLR limb compared to the control cohort during the heelstrike phase. Greater co-activation in multiple gait phases was associated with less knee flexion displacement (r = -0.293 to -0.377), smaller peak vertical ground reaction force magnitude (r = -0.291), smaller peak internal knee extension moment (r = -0.291 to -0.328), and greater peak internal knee valgus moment (r = 0.317). INTERPRETATION: Individuals with ACLR displayed heightened co-activation during walking which was associated with biomechanical outcomes that have been linked to negative changes in joint health following ACLR. These data suggest that excessive co-activation may contribute to the mechanical pathogenesis of post-traumatic osteoarthritis. ClinicalTrials.gov Identifier: NCT02605876.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Gait/physiology , Hamstring Muscles/physiology , Quadriceps Muscle/physiology , Adult , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/surgery , Biomechanical Phenomena/physiology , Female , Humans , Knee Joint/physiology , Male , Mechanical Phenomena , Osteoarthritis, Knee/surgery , Walking/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...