Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298325

ABSTRACT

Hydroxyurea (HU), a drug for treating cancers of the blood and the management of sickle cell anemia, induces hypogonadism in males. However, the impact of HU on testicular architecture and function, as well as its effects on the resumption of male fertility following treatment withdrawal, remain poorly understood. We used adult male mice to determine whether HU-induced hypogonadism is reversible. Fertility indices of mice treated with HU daily for ~1 sperm cycle (2 months) were compared with those of their control counterparts. All indices of fertility were significantly reduced among mice treated with HU compared to controls. Interestingly, significant improvements in fertility indices were apparent after a 4-month withdrawal from HU treatment (testis weight: month 1 post-HU withdrawal (M1): HU, 0.09 ± 0.01 vs. control, 0.33 ± 0.03; M4: HU, 0.26 ± 0.03 vs. control, 0.37 ± 0.04 g); sperm motility (M1: HU,12 vs. 59; M4: HU, 45 vs. control, 61%; sperm density (M1: HU, 1.3 ± 0.3 vs. control, 15.7 ± 0.9; M4: HU, 8.1 ± 2.5 vs. control, 16.8 ± 1.9 million). Further, circulating testosterone increased in the 4th month following HU withdrawal and was comparable to that of controls. When a mating experiment was conducted, recovering males sired viable offspring with untreated females albeit at a lower rate than control males (p < 0.05); therefore, qualifying HU as a potential candidate for male contraception.


Subject(s)
Hydroxyurea , Hypogonadism , Female , Male , Mice , Animals , Hydroxyurea/adverse effects , Hydroxyurea/metabolism , Sperm Motility , Semen , Spermatogenesis , Testis/metabolism , Fertility , Hypogonadism/drug therapy , Hypogonadism/metabolism
2.
J Biol Chem ; 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26048988

ABSTRACT

The duration and strength of the dopaminergic signal is regulated by the dopamine transporter (DAT). Drug addiction, neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine (AMPH) induced DAT-meditated DA efflux and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT/α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells, and that AMPH-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases DA efflux and enhances DAT localization in cholesterol rich membrane microdomains.

3.
J Biol Chem ; 285(53): 41827-35, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-20956534

ABSTRACT

The identity of the cell adhesive factors in fetal bovine serum, commonly used to supplement growth media, remains a mystery due to the plethora of serum proteins. In the present analyses, we showed that fetuin-A, whose function in cellular attachment in tissue culture has been debated for many years, is indeed a major serum cell attachment factor particularly for tumor cells. We are able to report this because of a new purification strategy that has for the first time given us a homogeneous protein band in colloidal Coomassie-stained gels that retains biological activity. The tumor cells adhered to immobilized fetuin-A and not α(2)-macroglobulin, its major contaminant. The interaction of cells with fetuin-A was driven mainly by Ca(2+) ions, and cells growing in regular medium supplemented with fetal bovine serum were just as sensitive to loss of extracellular Ca(2+) ions as cells growing in fetuin-A. Fractionation of human serum revealed that cell attachment was confined to the fractions that had fetuin-A. Interestingly, the tumor cells also took up fetuin-A and secreted it back to the medium using an unknown mechanism that can be observed in live cells. The attachment of tumor cells to fetuin-A was accompanied by phosphatidylinositol 3-kinase/Akt activation that was down-regulated in cells that lack annexin-A6, one of the cell surface receptors for fetuin-A. Taken together, our data show the significance of fetuin-A in tumor cell growth mechanisms in vitro and open new research vistas for this protein.


Subject(s)
Blood Proteins/chemistry , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Signal Transduction , alpha-Fetoproteins/chemistry , Breast Neoplasms/metabolism , Calcium/chemistry , Cell Adhesion , Cell Membrane/metabolism , Cell Proliferation , Glycerol/chemistry , Green Fluorescent Proteins/chemistry , Humans , Ions , MAP Kinase Signaling System , Phosphatidylinositol 3-Kinases/metabolism , alpha-2-HS-Glycoprotein
SELECTION OF CITATIONS
SEARCH DETAIL
...