Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Toxicol Methods ; 104: 106899, 2020.
Article in English | MEDLINE | ID: mdl-32702414

ABSTRACT

INTRODUCTION: Building an understanding of in vivo efficacy based on the evaluation of in vitro affinity or potency is critical in expediting early decision making in drug discovery and can significantly reduce the need for animal studies. The aim of the present study was to understand the translation of in vitro to in vivo endpoints for the cannabinoid receptor 1 (CB1). METHODS: Using a selection of CB1 agonists we describe an evaluation of in vitro to in vivo translation comparing in vitro receptor affinity or functional potency, using both cAMP and ß-arrestin endpoints, to various in vivo CB1 agonist-associated endpoints. RESULTS: We demonstrate that in vitro CB1 agonism significantly correlates with the CB1-induced cue in the drug discrimination model in vivo, but not with other purported CB1 agonist-mediated in vivo endpoints, including hypothermia and sedation. Thus, these data challenge common perceptions regarding CB1 agonist-induced tetrad effects in rodents. DISCUSSION: This work exemplifies how in vitro profiling of receptor affinity or potency can predict in vivo pharmacodynamic effects, using the CB1 as an example system. The translatability of in vitro activity to in vivo efficacy allows for the ability to rapidly contextualize off-target CB1 in vitro findings, allowing clear and rapid definition of the risk posed by such activity without the need for extensive animal studies. This has significant implications in terms of early decision making in drug discovery and reducing the use of animals in research, while also outlining a template for expanding the approach for additional targets.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Cyclic AMP/metabolism , Receptor, Cannabinoid, CB1/agonists , beta-Arrestins/metabolism , Animals , CHO Cells , Cell Line , Cricetulus , Drug Discovery/methods , Humans , Male , Rats , Receptor, Cannabinoid, CB1/metabolism , Translational Research, Biomedical
2.
J Pharmacol Toxicol Methods ; 100: 106602, 2019.
Article in English | MEDLINE | ID: mdl-31238094

ABSTRACT

Regulatory guidelines recommend specialised safety pharmacology assessments in animals to characterise drug-induced effects on the central nervous system (CNS) prior to first-in-human trials, including the functional observational battery or Irwin test (here collectively termed neurofunctional assessments). These assessments effectively detect overtly neurotoxic drugs; however, the suitability of the in vivo assessments to readily detect more subtle drug effects on the nervous system has been questioned. A survey was formulated by an international expert working group convened by the (NC3Rs) to capture practice in CNS neurofunctional assessment tests and opinions on the perceived impact of in vivo test battery endpoints. Impact was defined as "the impact of measures alone/in combination on decision making in drug development or candidate selection when using the neurofunctional assessment". The results demonstrate that rodents are predominantly used for small molecule assessments, whereas non-rodents are frequently used to test biotherapeutics. Practice varied between respondents in terms of experimental design. Subsets of test battery endpoints were consistently considered highly impactful (e.g. convulsions, stereotypic behaviors); however, the perceived impact level of other endpoints varied depending whether drugs were designed for CNS targets. Many endpoints were considered to have no or minimal impact, whereas a subset of endpoints in CNS test batteries appears more impactful than others. A critical evaluation is required to assess whether the translational value of CNS in vivo safety pharmacology assessments could be increased by modifying or augmenting standard CNS test batteries. A revised approach to CNS safety assessment has the potential to reduce animal numbers without compromising patient safety.


Subject(s)
Drug Development/methods , Drug Evaluation, Preclinical/methods , Models, Animal , Pharmacology/methods , Animals , Central Nervous System/drug effects , Drug Development/legislation & jurisprudence , Drug Development/statistics & numerical data , Drug Evaluation, Preclinical/statistics & numerical data , Drug-Related Side Effects and Adverse Reactions/prevention & control , Humans , Pharmacology/legislation & jurisprudence , Research Design/legislation & jurisprudence , Research Design/statistics & numerical data , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...