Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500034

ABSTRACT

Motivated by the loss of tensile strength in 9%Ni steel arc-welded joints performed using commercially available Ni-based austenitic filler metals, the viability of retaining tensile strength using an experimentally produced matching ferritic filler metal was confirmed. Compared to the austenitic Ni-based filler metal (685 MPa), higher tensile strength in gas metal arc (GMA) welded joints was achieved using a ferritic filler metal (749 MPa) due to its microstructure being similar to the base metal (645 MPa). The microstructure of hard martensite resulted in an impact energy of 71 J (-196 °C), which was two times higher than the specified minimum value of ≥34 J. The tensile and impact strength of the welded joint is affected not only by its microstructure, but also by the degree of its mechanical mismatch depending on the type of filler metal. Welds with a harder microstructure and less mechanical mismatch are important for achieving an adequate combination of tensile strength and notched impact strength. This is achievable with the cost-effective ferritic filler metal. A more desirable combination of mechanical properties is guaranteed by applying low preheating temperature (200 °C), which is a more practicable and economical solution compared to the high post-weld heat treatment (PWHT) temperature (580 °C) suggested by other research.

2.
Materials (Basel) ; 12(18)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547448

ABSTRACT

The advantage of selective laser melting (SLM) is its high accuracy and geometrical flexibility. Because the maximum size of the components is limited by the process chamber, possibilities must be found to combine several parts manufactured by SLM. An application where this is necessary, is, for example, the components of gas turbines, such as burners or oil return pipes, and inserts, which can be joined by circumferential welds. However, only a few investigations to date have been carried out for the welding of components produced by SLM. The object of this paper is, therefore, to investigate the feasibility of laser beam welding for joining SLM tube connections made of nickel-based alloys. For this purpose, SLM-manufactured Inconel 625 and Inconel 718 tubes were welded with a Yb:YAG disk laser and subsequently examined for residual stresses and defects. The results showed that the welds had no significant influence on the residual stresses. A good weld quality could be achieved in the seam circumference. However, pores and pore nests were found in the final overlap area, which meant that no continuous good welding quality could be accomplished. Pore formation was presumably caused by capillary instabilities when the laser power was ramped out.

SELECTION OF CITATIONS
SEARCH DETAIL
...