Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Chromatogr A ; 1713: 464522, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38041975

ABSTRACT

Microsampling allows the collection of blood samples using a method which is inexpensive, simple and minimally-invasive, without the need for specially-trained medical staff. Analysis of whole blood provides a more holistic understanding of per- and polyfluoroalkyl substances (PFAS) body burden. Capillary action microsamplers (Trajan hemaPEN®) allow the controlled collection of whole blood as dried blood spots (DBS) (four 2.74 µL ± 5 %). The quantification of 75 PFAS from DBS was evaluated by comparing five common extraction techniques. Spiked blood (5 ng/mL PFAS) was extracted by protein precipitation (centrifuged; filtered), acid-base liquid-liquid extraction, trypsin protease digestion, and weak anion exchange (WAX) solid-phase extraction with analysis by high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Filtered protein precipitation was the most effective extraction method, recovering 72 of the 75 PFAS within 70 to 130 % with method reporting limit (MRL) for PFOS of 0.17 ng/L and ranging between 0.05 ng/mL and 0.34 ng/mL for all other PFAS. The optimised method was applied to human blood samples to examine Inter- (n = 7) and intra-day (n = 5) PFAS blood levels in one individual. Sixteen PFAS were detected with an overall Σ16PFAS mean = 6.3 (range = 5.7-7.0) ng/mL and perfluorooctane sulfonate (branched and linear isomers, ΣPFOS) = 3.3 (2.8-3.7) ng/mL being the dominant PFAS present. To the authors knowledge, this minimally invasive self-sampling protocol is the most extensive method for PFAS in blood reported and could be a useful tool for large scale human biomonitoring studies.


Subject(s)
Fluorocarbons , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Dried Blood Spot Testing/methods , Chromatography, High Pressure Liquid/methods
2.
Anal Chim Acta ; 1247: 340903, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36781255

ABSTRACT

Due to their size, conventional high performance liquid chromatographs (HPLCs) are difficult to place close to a reaction vessel within a pharmaceutical manufacturing or development site. Typically, long transfer lines are required to move sample from the reactor to the HPLC for analysis and high solvent usage is required. However, herein a compact and modular separation system has been developed to enable co-location of an HPLC with a small-scale reactor for reaction monitoring in the synthesis of active pharmaceutical ingredients. Using a framework based on capillary HPLC, a compact gradient separation system with a fully modular architecture is described. A custom miniature diode-array detector with a linear dynamic range (up to 1500 mAU at 210 nm) was integrated and evaluated for on-line reaction monitoring. In evaluating system suitability, average peak area %RSD of <3%, and an average retention time %RSD of <0.7%, were achieved. To demonstrate practical utility, the compact system was coupled directly to an on-line lab-scale flow through reactor for continuous reaction monitoring in the laboratory fume hood, where a study of the 3rd Bourne reaction was used to compare the performance of the compact system with a commercially available process HPLC instrument (Waters PATROL UPLC). Further, 33 off-line samples from a continuous crystallization reactor were analysed and it was found that the developed compact HPLC system showed equivalent quantitative performance to an Agilent 1290 Infinity II HPLC system.


Subject(s)
Chromatography, High Pressure Liquid , Chromatography, High Pressure Liquid/methods , Solvents/chemistry , Pharmaceutical Preparations
3.
J Chromatogr A ; 1656: 462545, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34543882

ABSTRACT

Liquid chromatography (LC) has broad applicability in the pharmaceutical industry, from the early stages of drug discovery to reaction monitoring and process control. However, small footprint, truly portable LC systems have not yet been demonstrated and fully evaluated practically for on-line, in-line or at-line pharmaceutical analysis. Herein, a portable, briefcase-sized capillary LC fitted with a miniature multi-deep UV-LED detector has been developed and interfaced with a portable mass spectrometer for on-site pharmaceutical analysis. With this configuration, the combined small footprint portable LC-UV/MS system was utilized for the determination of small molecule pharmaceuticals and reaction monitoring. The LC-UV/MS system was interfaced directly with a process sample cart and applied to automated pharmaceutical analysis, as well as also being benchmarked against a commercial process UPLC system (Waters PATROL system). The portable system gave low detection limits (∼3 ppb), a wide dynamic range (up to 200 ppm) and was used to confirm the identity of reaction impurities and for studying the kinetics of synthesis. The developed platform showed robust performance for automated process analysis, with less than 5.0% relative standard deviation (RSD) on sample-to-sample reproducibility, and less than 2% carryover between samples. The system has been shown to significantly increase throughput by providing near real-time analysis and to improve understanding of synthetic processes.


Subject(s)
Pharmaceutical Preparations , Chromatography, Liquid , Mass Spectrometry , Reproducibility of Results
4.
Anal Chem ; 93(35): 12032-12040, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34436859

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are emerging environmental pollutants of global concern. For rapid field site evaluation, there are very few sensitive, field-deployable analytical techniques. In this work, a portable lightweight capillary liquid chromatography (capLC) system was coupled with a small footprint portable mass spectrometer and configured for field-based applications. Further, an at-site ultrasound-assisted extraction (pUAE) methodology was developed and applied with a portable capLC/mass spectrometry (MS) system for on-site analysis of PFASs in real soil samples. The influential variables on the integration of capLC with MS and on the resolution and signal intensity of the capLC/MS setup were investigated. The important parameters affecting the efficiency of the pUAE method were also studied and optimized using the response surface methodology based on a central composite design. The mean recovery for 11 PFASs ranged between 70 and 110%, with relative standard deviations ranging from 3 to 12%. In-field method sensitivity for 12 PFASs ranged from 0.6 to 0.1 ng/g, with wide dynamic ranges (1-600 ng/g) and excellent linearities (R2 > 0.991). The in-field portable system was benchmarked against a commercial lab-based LC-tandem MS (MS/MS) system for the analysis of PFASs in real soil samples, with the results showing good agreement. When deployed to a field site, 12 PFASs were detected and identified in real soil samples at concentrations ranging from 8.1 ng/g (for perfluorooctanesulfonic acid) to 2935.0 ng/g (perfluorohexanesulfonic acid).


Subject(s)
Environmental Pollutants , Fluorocarbons , Water Pollutants, Chemical , Chromatography, Liquid , Fluorocarbons/analysis , Soil , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
5.
J Chromatogr A ; 1646: 462086, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33892255

ABSTRACT

Stand-alone electrospray ionization mass spectrometry (ESI-MS) has been advancing through enhancements in throughput, selectivity and sensitivity of mass spectrometers. Unlike traditional MS techniques which usually require extensive offline sample preparation and chromatographic separation, many sample preparation techniques are now directly coupled with stand-alone MS to enable outstanding throughput for bioanalysis. In this review, we summarize the different sample clean-up and/or analyte enrichment strategies that can be directly coupled with ESI-MS and nano-ESI-MS for the analysis of biological fluids. The overview covers the hyphenation of different sample preparation techniques including solid phase extraction (SPE), solid phase micro-extraction (SPME), slug flow micro-extraction/nano-extraction (SFME/SFNE), liquid extraction surface analysis (LESA), extraction electrospray, extraction using digital microfluidics (DMF), and electrokinetic extraction (EkE) with ESI-MS and nano-ESI-MS.


Subject(s)
Spectrometry, Mass, Electrospray Ionization/methods , Miniaturization , Solid Phase Microextraction/methods , Specimen Handling
6.
Anal Chem ; 92(20): 13688-13693, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32985176

ABSTRACT

A new miniature deep UV absorbance detector has been developed using low-cost and high-performance LEDs, which can be operated in both scanning (230 to 300 nm) and individual wavelength (240, 255, and 275 nm) detection modes. The detector is mostly composed of off-the-shelf components, such as LEDs, trifurcated fiber optic assembly, a capillary Z-type flow cell, and photodiodes. It has been characterized for use with a standard capillary LC system and was benchmarked against a standard variable wavelength capillary LC detector. The detector shows very low levels of stray light (<0.4%), utilization of up to 99.0% of the effective path length of the flow cell, a wide dynamic range (0.5 to 200 µg/mL for sulfamethazine, carbamazepine, and flavone), and low noise levels (at 300 µAU level). The detector was applied within a miniaturized LC system.

7.
J Chromatogr A ; 1631: 461540, 2020 Nov 08.
Article in English | MEDLINE | ID: mdl-32980801

ABSTRACT

A new miniaturised capillary flow-through deep-UV absorbance detector has been developed using a microscale surface mounted device- type light-emitting diode (LED) (Crystal IS OPTAN 3535-series), emitting at 235 nm and with a half-height band width of 12 nm, and a high-sensitivity Z-shaped flow-cell. Compared with a previously reported TO-39 ball lens LEDs emitting at 235 nm, the new generation LED produced a 20-fold higher optical output and delivered up to 35 times increase in external quantum efficiency (EQE). The Z-cell was based on a reflective rectangular optical path with cross-sectional dimensions of 100 × 100 µm and a physical optical pathlength of 1.2 mm. Inclusion of UV transparent fused-silica ball lenses, between the SMD and the Z-cell, improved light transmission by a factor of 9 and improved the detector signal-to-noise ratio by a factor of 2.2, at the same input current. The detector was housed within an Al-housing fitted with a cooling fan and demonstrated excellent linearity with stray light down to 0.06%, and an effective pathlength of 1.1 mm (92% of nominal pathlength). The resultant detector was fitted successfully into a briefcase-sized portable capillary HPLC system, and practically demonstrated with the detection of a mixture of 13 test compounds at the sub-mg L-1 level in <5 min using gradient elution.


Subject(s)
Ultraviolet Rays , Chromatography, High Pressure Liquid , Cross-Sectional Studies
8.
Angew Chem Int Ed Engl ; 59(51): 23162-23168, 2020 12 14.
Article in English | MEDLINE | ID: mdl-32869436

ABSTRACT

Here, an electrokinetic extraction (EkE) syringe is presented allowing for on-line electrokinetic removal of serum proteins before ESI-MS. The proposed concept is demonstrated by the determination of pharmaceuticals from human serum within minutes, with sample preparation limited to a 5× dilution of the sample in the background electrolyte (BGE) and application of voltage, both of which can be performed in-syringe. Signal enhancements of 3.6-32 fold relative to direct infusion of diluted serum and up to 10.8 fold enhancement, were obtained for basic and acidic pharmaceuticals, respectively. Linear correlations for the basic drugs by EkE-ESI-MS/MS were achieved, covering the necessary clinical range with LOQs of 5.3, 7.8, 6.1, and 17.8 ng mL-1 for clomipramine, chlorphenamine, pindolol, and atenolol, respectively. For the acidic drugs, the EkE-ESI-MS LOQs were 3.1 µg mL-1 and 2.9 µg mL-1 for naproxen and paracetamol, respectively. The EkE-ESI-MS and EkE-ESI-MS/MS methods showed good accuracy (%found of 81 % to 120 %), precision (≤20 %), and linearity (r>0.997) for all the studied drugs in spiked serum samples.


Subject(s)
Blood Proteins/isolation & purification , Syringes , Acetaminophen/blood , Atenolol/blood , Blood Proteins/chemistry , Chlorpheniramine/blood , Clomipramine/blood , Humans , Kinetics , Naproxen/blood , Pindolol/blood , Spectrometry, Mass, Electrospray Ionization
9.
J Chromatogr A ; 1626: 461374, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32797852

ABSTRACT

This work demonstrates the development of a compact, modular, cost-effective separation system configured to address a specific separation problem. The principles of the separation are based on gradient capillary liquid chromatography where the system consists of precision stepper motor-driven portable syringe pumps with interchangeable glass syringes (100 µL to 1000 µL). Excellent flow-rate precision of < 1% RSD was achieved with typical flow-rates ranging from 1 µL/min to 100 µL/min, which was ideal for capillary columns. A variable external loop volume and electrically actuated miniature injection valve was used for sample introduction. Detection was based upon a commercial Z-type UV absorbance flow-cell housed within a custom-built cooling enclosure (40 mm x 40 mm) which also contained a UV-LED light-source and a photodiode. System and chromatographic performance was evaluated using linear gradient elution, with day to day repeatability of <1.5% RSD (n = 6) for peak area, and < 0.4% RSD (n = 6) for retention time, for the separation of a 5 component mixture using a 50 mm X 530 µm ID C18 3 µm particle capillary column. The system can run any commercial or in-house packed columns from 50 mm to 100 mm length with IDs ranging from 200 to 700 µm. The developed portable system was operated using custom-built windows-based chromatography software, complete with data acquisition and system control.


Subject(s)
Chromatography, High Pressure Liquid/methods , Caffeine/analysis , Carbamazepine/analysis , Cost-Benefit Analysis , Limit of Detection , Miniaturization , Point-of-Care Systems , Reproducibility of Results , Spectrophotometry, Ultraviolet , Sulfamethazine/analysis
10.
J Chromatogr A ; 1613: 460669, 2020 Feb 22.
Article in English | MEDLINE | ID: mdl-31732157

ABSTRACT

The development and application of non-porous and porous sorptive rods, comprised of polydimethylsiloxane-microdiamond (PDMS-MD) composites, is reported. The PDMS-MD composites were made porous using inorganic salt (NaCl and NaHCO3) particles as dissolvable templates. Materials with pore size of ~40 µm down to ~5 µm were produced. The advantages of incorporating up to ~60%microdiamond (2-4 µm) into PDMS included: (1) significant increase in the density, which saw the rods sink within the aqueous sample without addition of secondary metal or glass materials, (2) significant improvement in mechanical stability (the porous composite rods could be thermally treated multiple times before application, unlike porous PDMS), (3) increased thermal stability up to 450-500 °C with only 6% weight loss of volatile components, and (4) higher thermal conductivity, estimated to be 108% higher than for PDMS. The PDMS-MD investigated as a sorbent for extraction, followed by liquid desorption and GC-FID analysis. Recovery of the sorbent for test solutes, isoamyl acetate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, and phenethyl acetate, was found to range from ~87% to >100, with RSD of 2.10-12.50% in synthetic wine samples. Non-porous composite rods provided similar % recoveries to a commercial sorptive device (PDMS Twister), whereas porous rods showed improved % recovery for most of the test solutes (>10-20%) when applied under similar conditions. The limits of detection (LOD) for the above solutes within the developed method ranged from 0.60 to 27.30 µg L-1). Application of the PDMS-MD-LD-GC-FID method to white wine samples demonstrated how the PDMS-MD composite material can be applied as a robust and an efficient sorptive phase for trace chemical analysis.


Subject(s)
Chemistry Techniques, Analytical/methods , Diamond/chemistry , Dimethylpolysiloxanes/chemistry , Wine/analysis , Chromatography, Gas , Limit of Detection , Water/chemistry
11.
Anal Chem ; 91(13): 8259-8266, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31141347

ABSTRACT

A 25 µL analytical glass syringe has been used for isoelectric focusing (IEF) utilizing the stainless-steel needle and plunger as electrodes. The generation of protons and hydroxyl ions at the electrodes facilitated a neutralization reaction boundary (NRB) mechanism to focus different amphoteric compounds, such as hemoglobin, bovine serum albumin, R-phycoerythrin, and histidine, within minutes. After optimization of different experimental parameters affecting the IEF process and the coupling of the IEF syringe with electrospray ionization mass spectrometry (ESI-MS), a BGE composed of NH4Ac, 1.0 mM, pH 4.0, in 70.0% (v/v) acetonitrile was used for the IEF of histidine. A voltage of -200 V was applied for 5.0 min to accomplish the IEF and increased to -400 V during the infusion to ESI-MS at a flow rate of 4.0 µL/min. The coaxial sheath liquid consisting of 0.2% (v/v) formic acid was added at 4.0 µL/min. The detection limit was found to be 2.2 µg/mL and a nonlinear quadratic fit calibration curve was constructed for histidine over the range of 4.0-64.0 µg/mL with a correlation coefficient ( r) = 0.9998. The determination of histidine in spiked urine samples as relevant for the diagnosis of histidinemia was demonstrated by the IEF syringe-ESI-MS system with accuracy from 88.25% to 102.16% and a relative standard deviation less than 11%.


Subject(s)
Histidine/urine , Isoelectric Focusing/methods , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acid Metabolism, Inborn Errors/diagnosis , Buffers , Histidine Ammonia-Lyase/deficiency , Humans , Reproducibility of Results , Syringes
12.
Anal Bioanal Chem ; 410(17): 4235, 2018 07.
Article in English | MEDLINE | ID: mdl-29744560

ABSTRACT

The authors would like to call the reader's attention to the following: The instrument they used to measure the volumetric precision of the dispensing devices is not called "VMS" but "PCS®".

13.
Anal Bioanal Chem ; 410(14): 3315-3323, 2018 May.
Article in English | MEDLINE | ID: mdl-29623384

ABSTRACT

An accurate and precise 3 µL blood collection and dispensing system is presented for the preparation of dried blood spot (DBS) samples. Using end-to-end glass capillaries in conjugation with pre-punched DBS pads, a blood micro collection system was developed to eliminate the haematocrit dispersion, widely associated with DBS technology, while providing better levels of accuracy and precision during sample preparation. This methodology is compared to traditional micro-volume blood collection systems, such as a pipette and a digitally controlled analytical syringe. Results showed that % of recovery for the capillary methodology was closer to 100% across the three haematocrit (HCT) levels tested and when prepared by two users (98 to 100% for capillaries, 78 to 104% for pipette and 93 to 97% for digital syringe) attesting a higher accuracy. Additionally, by taking advantage of the capillary action mechanism to collect and dispense autonomously the desired volume of blood onto the DBS pad, coefficients of variation between two individuals were significantly lower than with standard methodologies (capillaries-0.05 to 0.77%, pipette-12.71 to 18.53% and digital syringe-0.72 to 1.77%). This alternate aspiration and dispensing methodology could be used by different users without compromising accuracy or precision when handling low volumes of blood during the pre-analytical steps. Graphical abstract Comparison of novel capillary dispensing methodology for dried blood spot sample preparation with pipette and digital syringe methodologies through accuracy and precision measurements of caffeine.


Subject(s)
Blood Specimen Collection/instrumentation , Dried Blood Spot Testing/instrumentation , Caffeine/blood , Equipment Design , Hematocrit , Humans , Reproducibility of Results , Sample Size
14.
Langmuir ; 33(50): 14220-14225, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29161045

ABSTRACT

Capillary action is one mechanism microfluidics uses to draw liquid autonomously in a substrate without the need of external energy. This behavior can be exploited to collect accurate volumes of liquids such as blood in narrow columns known as capillary tubes and help the development of inexpensive, user-friendly personalized biomedical tools. Precision bore glass capillaries demonstrate the "state of the art" for volume accuracy and precision, but height and radius must be carefully chosen in order to exploit the capillary action behavior efficiently. This Article investigates the influence of surface glass aging, due to prolonged exposure to humid air, and hematocrit level on the blood capillary rise. It provides also the tools to correctly define the optimum capillary dimensions to collect an accurate volume of blood in a glass capillary tube.


Subject(s)
Capillary Action , Blood Volume , Glass
15.
Anal Bioanal Chem ; 409(8): 2189-2199, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28078416

ABSTRACT

Non-specific protein adsorption on hydrophobic solid phase extraction (SPE) adsorbents can reduce the efficacy of purification. To improve sample clean-up, poly(divinyl benzene) (PDVB) monoliths grafted with hydrophilic polyethylene glycol methacrylate (PEGMA) were developed. Residual vinyl groups (RVGs) of the PDVB were employed as anchor points for PEGMA grafting. Two PEGMA monomers, M n 360 and 950, were compared for graft solutions containing 5-20% monomer. Protein binding was qualitatively screened using fluorescently labeled human serum albumin (HSA) to determine optimal PEGMA concentration. The fluorescent signal of PDVB was reduced for PDVB-g-PEGMA360 (10%) and PDVB-g-PEGMA950 (20%). The PEGMA content (w/w%) was quantified by solid state 1H NMR to be 29.9 ± 1.6% for PDVB-g-PEGMA360 and 7.7 ± 1.2% for PDVB-g-PEGMA950. To assess adsorbent performance breakthrough curves for PDVB, PDVB-g-PEGMA360 and PDVB-g-PEGMA950 were compared. The breakthrough volume (V B) and shape of the curve for PDVB-g-PEGMA950 were maintained relative to PDVB (2.3 and 2.8 mL, respectively). A reduced V B of 0.5 mL and shallow breakthrough curve indicated PDVB-g-PEGMA360 was not suitable for SPE. A high ibuprofen recovery of 92 ± 0.30 and 78 ± 0.93% was seen for PDVB and PDVB-g-PEGMA950, respectively. Protein adsorption was reduced from 31 ± 2.41 to 12 ± 0.49% for PDVB and PDVB-g-PEGMA950, respectively. SPE of ibuprofen from plasma was compared for PDVB and PDVB-g-PEGMA950 by at-line electrospray ionization mass spectrometry (ESI-MS). PDVB-g-PEGMA950 demonstrated a threefold increase in assay sensitivity indicating a superior analyte purification.


Subject(s)
Miniaturization , Polyethylene Glycols/chemistry , Polymers/chemistry , Proteins/isolation & purification , Solid Phase Extraction/methods , Vinyl Compounds/chemistry , Fluorescent Dyes/chemistry , Microscopy, Electron, Scanning , Nuclear Magnetic Resonance, Biomolecular
16.
J Chromatogr A ; 1410: 9-18, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26233256

ABSTRACT

While polymer monoliths are widely described for solid phase extraction (SPE), appropriate characterization is rarely provided to unravel the links between physical characteristics and observed advantages and disadvantages. Two known approaches to fabricate large surface area polymer monoliths with a bimodal pore structure were investigated. The first incorporated a high percentage of divinyl benzene (PDVB) and the second explored hypercrosslinking of pre-formed monoliths. Adsorption of probe analytes; anisole, benzoic acid, cinnamic acid, ibuprofen and cortisone were investigated using frontal analysis and the SPE performance was compared with particulate adsorbents. Frontal analysis of anisole described maximum adsorption capacities of 164mgg(-1) and 298mgg(-1) for hypercrosslinked and PDVB adsorbents, respectively. The solvated state specific surface area was calculated to be 341 and 518m(2)g(-1) respectively. BET revealed a hypercrosslinked surface area of 817m(2)g(-1), 2.5 times greater than in the solvated state. The PDVB BET surface area was 531m(2)g(-1), similar to the solvated state. Micropores of 1nm provided the enhanced surface area for hypercrosslinked adsorbents. PDVB displayed a pore size distribution of 1-6nm. Frontal analysis demonstrated the micropores present size exclusion for the larger probes. Recovery of anisole was determined by SPE using 0.4 and 1.0mLmin(-1). Recovery for PDVB remained constant at 90%±0.103 regardless of the extraction flow rate suggesting extraction performance is independent of flow rate. A more efficient sample purification of saccharin in urine was yielded by PDVB due to selective permeation of the small pores.


Subject(s)
Polystyrenes/chemistry , Solid Phase Extraction/methods , Adsorption , Molecular Weight , Porosity , Solid Phase Extraction/instrumentation
17.
Lipids ; 50(1): 85-100, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25466915

ABSTRACT

Using a strongly polar cyanopropyl capillary column we have investigated the gas chromatography (GC) separation behaviors of 24 octadecadienoic acid methyl ester (18:2ME) isomers compared against saturated methyl stearate (18:0ME) and arachidic acid methyl ester (20:0ME), and the dependency on the GC column temperature. The 24 isomers were obtained by performing cis-to trans-isomerization of six regioisomers: five of the 18:2ME isomers were prepared by the partial reduction of methyl α-linolenate and methyl γ-linolenate C18 trienoic acids with different double bond positions, whereas the sixth isomer, 18:2ME (c5, c9), was obtained from a raw constituent fatty acid methyl ester (FAME) sample extracted from Japanese yew seeds. There are no reference standards commercially available for 18:2ME isomers, and in elucidating the elution order of these isomers this study should help the future identification of cis- and trans-type of 18:2ME. We also report the identification method of cis- and trans-type of FAME using equivalent chain lengths and attempt the identification of cis- and trans-type of 18:2ME isomers from partially hydrogenated canola oil.


Subject(s)
Fatty Acids, Unsaturated/isolation & purification , Chromatography, Gas/methods , Chromatography, High Pressure Liquid/methods , Esters , Fatty Acids, Unsaturated/chemistry , Isomerism , Methylation
18.
J Proteomics ; 107: 13-23, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-24735915

ABSTRACT

This is the story of the experience of a multidisciplinary group at Macquarie University in Sydney as we participated in, and impacted upon, major currents that washed through protein science as the field of Proteomics emerged. The large scale analysis of proteins became possible. This is not a history of the field. Instead we have tried to encapsulate the stimulating personal ride we had transiting from conventional academe, to a Major National Research Facility, to the formation of Proteomics company Proteome Systems Ltd. There were lots of blind alleys, wrong directions, but we also got some things right and our efforts, along with those of many other groups around the world, did change the face of protein science. While the transformation is by no means yet complete, protein science is very different from the field in the 1990s. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.


Subject(s)
Proteome , Proteomics/history , Proteomics/methods , Anniversaries and Special Events , Australia , History, 20th Century , History, 21st Century , Humans , Proteomics/trends
19.
J Sep Sci ; 35(18): 2399-406, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22997030

ABSTRACT

Microextraction by packed sorbent (MEPS) has been directly hyphenated with ESI-MS for the rapid screening of opiates and codeine metabolites in urine. This study introduces a novel format of MEPS that incorporates a two-way valve in the barrel of the syringe enabling the direction of liquid flow to be manipulated. Controlled directional flow (CDF) MEPS allows sharp, concentrated sample bands to be delivered directly to the MS in small volumes and effectively eliminates the need to optimize elution. The method optimization assessed the recovery, matrix effects, and the speed of infusion, all critical variables for optimum ESI performance. Matching extraction workflows demonstrated a reduction in carryover from 65% for conventional MEPS to only 1% for CDF MEPS. The recovery (<89% for 50 µL sample), matrix effects (<42%), linearity (r(2) > 0.99), and LODs (<5 ng/mL) were determined to demonstrate method performance. The optimized approach was employed for the screening of codeine metabolites in urine. The ion trace revealed sharp sample bands corresponding to the codeine metabolites. At-line MEPS-ESI-MS allowed both sample preparation and analysis to be completed in only 5 min facilitating high throughput and alleviating the burden of method development.


Subject(s)
Codeine/urine , Morphine/urine , Oxycodone/urine , Solid Phase Microextraction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Codeine/metabolism , Female , Humans , Morphine/metabolism , Oxycodone/metabolism , Reference Values , Solid Phase Microextraction/instrumentation , Spectrometry, Mass, Electrospray Ionization/instrumentation
20.
Biomol NMR Assign ; 3(1): 1-3, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19636933

ABSTRACT

Presopore-specific antigen (PsA) is a cell surface glycoprotein of the cellular slime mould Dictyostelium discoidum implicated in cell adhesion. The (15)N, (13)C and (1)H chemical shift assignments of PsA were determined from multidimensional, multinuclear NMR experiments. Resonance assignments have been made for both the N-terminal globular domain and its attached O-glycosylated PTVT linker motif.


Subject(s)
Antigens, Protozoan/chemistry , Antigens, Surface/chemistry , Cell Adhesion Molecules/chemistry , Magnetic Resonance Spectroscopy/methods , Membrane Glycoproteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Protozoan Proteins/chemistry , Amino Acid Sequence , Carbon Isotopes/chemistry , Molecular Sequence Data , Nitrogen Isotopes/chemistry , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...