Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Evol ; : 1-13, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857586

ABSTRACT

INTRODUCTION: Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. METHODS: We reared newly eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2-53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. RESULTS: We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. CONCLUSION: These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.

2.
bioRxiv ; 2023 Dec 17.
Article in English | MEDLINE | ID: mdl-37425857

ABSTRACT

Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. We reared newly-eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2 to 53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.

3.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37131676

ABSTRACT

Reliably capturing transient animal behavior in the field and laboratory remains a logistical and financial challenge, especially for small ectotherms. Here, we present a camera system that is affordable, accessible, and suitable to monitor small, cold-blooded animals historically overlooked by commercial camera traps, such as small amphibians. The system is weather-resistant, can operate offline or online, and allows collection of time-sensitive behavioral data in laboratory and field conditions with continuous data storage for up to four weeks. The lightweight camera can also utilize phone notifications over Wi-Fi so that observers can be alerted when animals enter a space of interest, enabling sample collection at proper time periods. We present our findings, both technological and scientific, in an effort to elevate tools that enable researchers to maximize use of their research budgets. We discuss the relative affordability of our system for researchers in South America, which is home to the largest population of ectotherm diversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...