Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 19181, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160202

ABSTRACT

How we move our bodies affects how we perceive sound. For instance, head movements help us to better localize the source of a sound and to compensate for asymmetric hearing loss. However, many auditory experiments are designed to restrict head and body movements. To study the role of movement in hearing, we developed a behavioral task called sound-seeking that rewarded freely moving mice for tracking down an ongoing sound source. Over the course of learning, mice more efficiently navigated to the sound. Next, we asked how sound-seeking was affected by hearing loss induced by surgical removal of the malleus from the middle ear. After bilateral hearing loss sound-seeking performance drastically declined and did not recover. In striking contrast, after unilateral hearing loss mice were only transiently impaired and then recovered their sound-seek ability over about a week. Throughout recovery, unilateral mice increasingly relied on a movement strategy of sequentially checking potential locations for the sound source. In contrast, the startle reflex (an innate auditory behavior) was preserved after unilateral hearing loss and abolished by bilateral hearing loss without recovery over time. In sum, mice compensate with body movement for permanent unilateral damage to the peripheral auditory system. Looking forward, this paradigm provides an opportunity to examine how movement enhances perception and enables resilient adaptation to sensory disorders.


Subject(s)
Sound Localization , Animals , Mice , Sound Localization/physiology , Reflex, Startle/physiology , Hearing Loss/physiopathology , Male , Acoustic Stimulation , Mice, Inbred C57BL , Behavior, Animal , Sound , Female
2.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260458

ABSTRACT

How we move our bodies affects how we perceive sound. For instance, we can explore an environment to seek out the source of a sound and we can use head movements to compensate for hearing loss. How we do this is not well understood because many auditory experiments are designed to limit head and body movements. To study the role of movement in hearing, we developed a behavioral task called sound-seeking that rewarded mice for tracking down an ongoing sound source. Over the course of learning, mice more efficiently navigated to the sound. We then asked how auditory behavior was affected by hearing loss induced by surgical removal of the malleus from the middle ear. An innate behavior, the auditory startle response, was abolished by bilateral hearing loss and unaffected by unilateral hearing loss. Similarly, performance on the sound-seeking task drastically declined after bilateral hearing loss and did not recover. In striking contrast, mice with unilateral hearing loss were only transiently impaired on sound-seeking; over a recovery period of about a week, they regained high levels of performance, increasingly reliant on a different spatial sampling strategy. Thus, even in the face of permanent unilateral damage to the peripheral auditory system, mice recover their ability to perform a naturalistic sound-seeking task. This paradigm provides an opportunity to examine how body movement enables better hearing and resilient adaptation to sensory deprivation.

3.
J Neurotrauma ; 40(23-24): 2654-2666, 2023 12.
Article in English | MEDLINE | ID: mdl-37212274

ABSTRACT

Abstract Spinal cord injury (SCI) can induce dysfunction in a multitude of neural circuits including those that lead to impaired sleep, respiratory dysfunction, and neuropathic pain. We used a lower thoracic rodent contusion SCI model of neuropathic pain that has been shown to associate with increased spontaneous activity in primary afferents and hindlimb mechanosensory stimulus hypersensitivity. Here we paired capture of these variables with chronic capture of three state sleep and respiration to more broadly understand SCI-induced physiological dysfunction and to assess possible interrelations. Noncontact electric field sensors were embedded into home cages to non-invasively capture the temporal evolution of sleep and respiration changes for six weeks after SCI in naturally behaving mice. Hindlimb mechanosensitivity was assessed weekly, and terminal experiments measured primary afferent spontaneous activity in situ from intact lumbar dorsal root ganglia (DRG). We observed that SCI led to increased spontaneous primary afferent activity (both firing rate and the number of spontaneously active DRGs) that correlated with increased respiratory rate variability and measures of sleep fragmentation. This is the first study to measure and link sleep dysfunction and variability in respiratory rate in a SCI model of neuropathic pain, and thereby provide broader insight into the magnitude of overall stress burden initiated by neural circuit dysfunction after SCI.


Subject(s)
Neuralgia , Spinal Cord Injuries , Spinal Injuries , Mice , Animals , Neuralgia/etiology , Spinal Cord Injuries/complications , Spinal Cord , Sleep , Ganglia, Spinal
4.
Front Physiol ; 8: 854, 2017.
Article in English | MEDLINE | ID: mdl-29163199

ABSTRACT

In humans, exercises involving slowed respiratory rate (SRR) counter autonomic sympathetic bias and reduce responses to stressors, including in individuals with various degrees of autonomic dysfunction. In the rat, we examined whether operant conditioning could lead to reductions in respiratory rate (RR) and performed preliminary studies to assess whether conditioned SRR was sufficient to decrease physiological and behavioral responsiveness to stressors. RR was continuously monitored during 20 2-h sessions using whole body plethysmography. SRR conditioned, but not yoked control rats, were able to turn off aversive visual stimulation (intermittent bright light) by slowing their breathing below a preset target of 80 breaths/min. SRR conditioned rats greatly increased the incidence of breaths below the target RR over training, with average resting RR decreasing from 92 to 81 breaths/min. These effects were significant as a group and vs. yoked controls. Preliminary studies in a subset of conditioned rats revealed behavioral changes suggestive of reduced reactivity to stressful and nociceptive stimuli. In these same rats, intermittent sessions without visual reinforcement and a post-training priming stressor (acute restraint) demonstrated that conditioned rats retained reduced RR vs. controls in the absence of conditioning. In conclusion, we present the first successful attempt to operantly condition reduced RR in an animal model. Although further studies are needed to clarify the physio-behavioral concomitants of slowed breathing, the developed model may aid subsequent neurophysiological inquiries on the role of slow breathing in stress reduction.

5.
J Neurosci Methods ; 277: 88-100, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27993527

ABSTRACT

BACKGROUND: Numerous environmental and genetic factors can contribute significantly to behavioral and cardiorespiratory variability observed experimentally. Affordable technologies that allow for noninvasive home cage capture of physio-behavioral variables should enhance understanding of inter-animal variability including after experimental interventions. NEW METHOD: We assessed whether EPIC electric field sensors (Plessey Semiconductors) embedded within or attached externally to a rodent's home cage could accurately record respiration, heart rate, and motor behaviors. COMPARISON WITH EXISTING METHODS: Current systems for quantification of behavioral variables require expensive specialty equipment, while measures of respiratory and heart rate are often provided by surgically implanted or chronically affixed devices. RESULTS: Sensors accurately encoded imposed sinusoidal changes in electric field tested at frequencies ranging from 0.5-100Hz. Mini-metronome arm movements were easily detected, but response magnitude was highly distance dependent. Sensors accurately reported respiration during whole-body plethysmography. In anesthetized rodents, PVC tube-embedded sensors provided accurate mechanical detection of both respiratory and heart rate. Comparable success was seen in naturally behaving animals at rest or sleeping when sensors were attached externally. Video-verified motor behaviors (sniffing, grooming, chewing, and rearing) were detectable and largely separable by their characteristic voltage fluctuations. Larger movement-related events had comparably larger voltage dynamics that easily allowed for a broad approximation of overall motor activity. Spectrograms were used to quickly depict characteristic frequencies in long-lasting recordings, while filtering and thresholding software allowed for detection and quantification of movement-related physio-behavioral events. CONCLUSIONS: EPIC electric field sensors provide a means for affordable non-contact home cage detection of physio-behavioral variables.


Subject(s)
Biosensing Techniques , Heart Rate/physiology , Motor Activity/physiology , Respiration , Stereotyped Behavior/physiology , Animals , Electrocardiography , Male , Rats , Rats, Sprague-Dawley , Respiratory Function Tests , Signal Processing, Computer-Assisted
6.
PLoS One ; 11(5): e0154243, 2016.
Article in English | MEDLINE | ID: mdl-27152611

ABSTRACT

Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.


Subject(s)
Axons/physiology , Motor Neurons/physiology , Nerve Regeneration , Animals , Electromyography , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuromuscular Junction/physiology , Optics and Photonics
SELECTION OF CITATIONS
SEARCH DETAIL