Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802396

ABSTRACT

The high mortality rate for pancreatic cancer (PC) is due to the lack of specific symptoms at early tumor stages and a high biological aggressiveness. Reliable biomarkers and new therapeutic targets would help to improve outlook in PC. In this study, we analyzed the expression of GNMT in a panel of pancreatic cancer cell lines and in early-stage paired patient tissue samples (normal and diseased) by quantitative reverse transcription-PCR (qRT-PCR). We also investigated the effect of 1,2,3,4,6-penta-O-galloyl-ß-d-glucopyranoside (PGG) as a therapeutic agent for PC. We find that GNMT is markedly downregulated (p < 0.05), in a majority of PC cell lines. Similar results are observed in early-stage patient tissue samples, where GNMT expression can be reduced by a 100-fold or more. We also show that PGG is a strong inhibitor of PC cell proliferation, with an IC50 value of 12 ng/mL, and PGG upregulates GNMT expression in a dose-dependent manner. In conclusion, our data show that GNMT has promise as a biomarker and as a therapeutic target for PC.

2.
J Cancer Res Clin Oncol ; 144(2): 309-320, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29288362

ABSTRACT

PURPOSE: The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a 5-year survival rate of about 7%. Recent failures of targeted therapies inhibiting kinase activity in clinical trials have highlighted the need for new approaches towards combating this deadly disease. METHODS: In this study, we have identified genes that are significantly downregulated in PC, through a meta-analysis of large number of microarray datasets. We have used qRT-PCR to confirm the downregulation of selected genes in a panel of PC cell lines. RESULTS: This study has yielded several novel candidate tumor-suppressor genes (TSGs) including GNMT, CEL, PLA2G1B and SERPINI2. We highlight the role of GNMT, a methyl transferase associated with the methylation potential of the cell, and CEL, a lipase, as potential therapeutic targets. We have uncovered genetic links to risk factors associated with PC such as smoking and obesity. Genes important for patient survival and prognosis are also discussed, and we confirm the dysregulation of metabolic pathways previously observed in PC. CONCLUSIONS: While many of the genes downregulated in our dataset are associated with protein products normally produced by the pancreas for excretion, we have uncovered some genes whose downregulation appear to play a more causal role in PC. These genes will assist in providing a better understanding of the disease etiology of PC, and in the search for new therapeutic targets and biomarkers.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Pancreatic Neoplasms/genetics , Cell Line, Tumor , Datasets as Topic , Down-Regulation , Humans , Molecular Targeted Therapy , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction
3.
PLoS One ; 9(4): e93046, 2014.
Article in English | MEDLINE | ID: mdl-24740004

ABSTRACT

The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a five year survival rate of less than 5%. Improved screening for earlier diagnosis, through the detection of diagnostic and prognostic biomarkers provides the best hope of increasing the rate of curatively resectable carcinomas. Though many serum markers have been reported to be elevated in patients with PC, so far, most of these markers have not been implemented into clinical routine due to low sensitivity or specificity. In this study, we have identified genes that are significantly upregulated in PC, through a meta-analysis of large number of microarray datasets. We demonstrate that the biological functions ascribed to these genes are clearly associated with PC and metastasis, and that that these genes exhibit a strong link to pathways involved with inflammation and the immune response. This investigation has yielded new targets for cancer genes, and potential biomarkers for pancreatic cancer. The candidate list of cancer genes includes protein kinase genes, new members of gene families currently associated with PC, as well as genes not previously linked to PC. In this study, we are also able to move towards developing a signature for hypomethylated genes, which could be useful for early detection of PC. We also show that the significantly upregulated 800+ genes in our analysis can serve as an enriched pool for tissue and serum protein biomarkers in pancreatic cancer.


Subject(s)
Gene Regulatory Networks , Pancreatic Neoplasms/genetics , CpG Islands , DNA Methylation , Gene Expression Regulation, Neoplastic , Genetic Markers , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Up-Regulation
4.
BMC Syst Biol ; 6 Suppl 3: S2, 2012.
Article in English | MEDLINE | ID: mdl-23282132

ABSTRACT

BACKGROUND: Protein-protein interaction (PPI) networks carry vital information about proteins' functions. Analysis of PPI networks associated with specific disease systems including cancer helps us in the understanding of the complex biology of diseases. Specifically, identification of similar and frequently occurring patterns (network motifs) across PPI networks will provide useful clues to better understand the biology of the diseases. RESULTS: In this study, we developed a novel pattern-mining algorithm that detects cancer associated functional subgraphs occurring in multiple cancer PPI networks. We constructed nine cancer PPI networks using differentially expressed genes from the Oncomine dataset. From these networks we discovered frequent patterns that occur in all networks and at different size levels. Patterns are abstracted subgraphs with their nodes replaced by node cluster IDs. By using effective canonical labeling and adopting weighted adjacency matrices, we are able to perform graph isomorphism test in polynomial running time. We use a bottom-up pattern growth approach to search for patterns, which allows us to effectively reduce the search space as pattern sizes grow. Validation of the frequent common patterns using GO semantic similarity showed that the discovered subgraphs scored consistently higher than the randomly generated subgraphs at each size level. We further investigated the cancer relevance of a select set of subgraphs using literature-based evidences. CONCLUSION: Frequent common patterns exist in cancer PPI networks, which can be found through effective pattern mining algorithms. We believe that this work would allow us to identify functionally relevant and coherent subgraphs in cancer networks, which can be advanced to experimental validation to further our understanding of the complex biology of cancer.


Subject(s)
Data Mining/methods , Neoplasms/metabolism , Protein Interaction Maps , Algorithms , Databases, Genetic , Gene Expression , Humans , Models, Biological , Reproducibility of Results , Systems Biology
5.
Comput Biol Chem ; 34(3): 210-4, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20537955

ABSTRACT

The Pfam database is an important tool in genome annotation, since it provides a collection of curated protein families. However, a subset of these families, known as domains of unknown function (DUFs), remains poorly characterized. We have related sequences from DUF404, DUF407, DUF482, DUF608, DUF810, DUF853, DUF976 and DUF1111 to homologs in PDB, within the midnight zone (9-20%) of sequence identity. These relationships were extended to provide functional annotation by sequence analysis and model building. Also described are examples of residue plasticity within enzyme active sites, and change of function within homologous sequences of a DUF.


Subject(s)
Molecular Sequence Annotation/methods , Sequence Analysis, Protein , Catalytic Domain , Databases, Protein , Sequence Homology, Amino Acid
6.
Proteins ; 71(2): 910-9, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18004781

ABSTRACT

The sequence homology detection relies on score matrices, which reflect the frequency of amino acid substitutions observed in a dataset of homologous sequences. The substitution matrices in popular use today are usually constructed without consideration of the structural context in which the substitution takes place. Here, we present amino acid substitution matrices specific for particular polar-nonpolar environment of the amino acid. As expected, these matrices [context-specific substitution matrices (CSSMs)] show striking differences from the popular BLOSUM62 matrix, which does not include structural information. When incorporated into BLAST and PSI-BLAST, CSSM outperformed BLOSUM matrices as assessed by ROC curve analyses of the number of true and false hits and by the accuracy of the sequence alignments to the hit sequences. These findings are also of relevance to profile-profile-based methods of homology detection, since CSSMs may help build a better profile. Profiles generated for protein sequences in PDB using CSSM-PSI-BLAST will be made available for searching via RPSBLAST through our web site http://lmbbi.nci.nih.gov/.


Subject(s)
Amino Acid Substitution , Proteins/chemistry , Sequence Homology, Amino Acid , Structural Homology, Protein , Algorithms , Computational Biology/methods , Databases, Protein , Protein Structure, Tertiary
7.
Nucleic Acids Res ; 32(9): 2838-43, 2004.
Article in English | MEDLINE | ID: mdl-15155852

ABSTRACT

Gap penalty is an important component of the scoring scheme that is needed when searching for homologous proteins and for accurate alignment of protein sequences. Most homology search and sequence alignment algorithms employ a heuristic 'affine gap penalty' scheme q + r x n, in which q is the penalty for opening a gap, r the penalty for extending it and n the gap length. In order to devise a more rational scoring scheme, we examined the pattern of gaps that occur in a database of structurally aligned protein domain pairs. We find that the logarithm of the frequency of gaps varies linearly with the length of the gap, but with a break at a gap of length 3, and is well approximated by two linear regression lines with R2 values of 1.0 and 0.99. The bilinear behavior is retained when gaps are categorized by secondary structures of the two residues flanking the gap. Similar results were obtained when another, totally independent, structurally aligned protein pair database was used. These results suggest a modification of the affine gap penalty function.


Subject(s)
Databases, Protein , Sequence Alignment/methods , Sequence Homology, Amino Acid , Computational Biology , Probability , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...