Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Transl Med ; 13(6): 522-531, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38619045

ABSTRACT

Placenta-derived human amniotic epithelial cells (hAEC) exhibit anti-inflammatory and anti-fibrotic effects in cirrhosis models. We conducted a first-in-human phase I clinical trial to assess the safety and tolerability of hAEC in adults with compensated cirrhosis. We examined increasing and repeated doses of hAEC in 9 patients in 3 cohorts. Cohort 1 patients received 0.5 × 106/kg hAEC in one IV infusion. Cohort 2 patients received 1 × 106/kg hAEC in one IV infusion. The patients in cohort 3 received 1 × 106/kg hAEC on days 0 and 28. Here, we report follow-up to post-infusion day 56 (D56), during which no serious adverse events occurred. Six patients experienced no study-related adverse events, while 3 patients reported mild (grade 1) headaches that were possibly infusion-related. A transient decrease in serum platelet count occurred in all patients, which returned to baseline screening values by day 5. FIB-4 values to assess fibrosis were significantly lower at D56. Although not statistically significant, serum AST levels and liver stiffness measurements at D56 were lower than those at baseline. The hepatic venous pressure gradient, a measure of portal hypertension, declined in 4 patients, did not change in 3 patients, and increased in 2 patients. In conclusion, intravenous infusion of allogeneic hAEC in patients with compensated cirrhosis at the doses used in this study was safe and well tolerated, with no difference observed between 1 and 2 doses. Decreased hepatic inflammation, liver stiffness, and portal hypertension support larger studies aimed at identifying patients who may benefit from this therapy. Clinical Trial registration: The trial was prospectively entered on the Australian Clinical Trials Registry (ANZCTR12616000437460).


Subject(s)
Amnion , Epithelial Cells , Liver Cirrhosis , Humans , Female , Amnion/transplantation , Liver Cirrhosis/therapy , Liver Cirrhosis/complications , Middle Aged , Male , Adult , Aged
2.
Stem Cell Res Ther ; 12(1): 429, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321089

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. METHODS: Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. RESULTS: hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNß in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. CONCLUSIONS: Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Carcinoma, Hepatocellular/metabolism , Diet, High-Fat , Disease Models, Animal , Epithelial Cells , Liver/metabolism , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Stem Cells
3.
Cell Transplant ; 29: 963689720950221, 2020.
Article in English | MEDLINE | ID: mdl-32813573

ABSTRACT

Human amnion epithelial cells (hAECs) exert potent antifibrotic and anti-inflammatory effects when transplanted into preclinical models of tissue fibrosis. These effects are mediated in part via the secretion of soluble factors by hAECs which modulate signaling pathways and affect cell types involved in inflammation and fibrosis. Based on these reports, we hypothesized that these soluble factors may also support liver regeneration during chronic liver injury. To test this, we characterized the effect of both hAECs and hAEC-conditioned medium (CM) on liver repair in a mouse model of carbon tetrachloride (CCl4)-induced fibrosis. Liver repair was assessed by liver fibrosis, hepatocyte proliferation, and the liver progenitor cell (LPC) response. We found that the administration of hAECs or hAEC-CM reduced liver injury and fibrosis, sustained hepatocyte proliferation, and reduced LPC numbers during chronic liver injury. Additionally, we undertook in vitro studies to document both the cell-cell and paracrine-mediated effects of hAECs on LPCs by investigating the effects of co-culturing the LPCs and hAECs and hAEC-CM on LPCs. We found little change in LPCs co-cultured with hAECs. In contrast, hAEC-CM enhances LPC proliferation and differentiation. These findings suggest that paracrine factors secreted by hAECs enhance liver repair by reducing fibrosis while promoting regeneration during chronic liver injury.


Subject(s)
Amnion/metabolism , Epithelial Cells/metabolism , Liver Cirrhosis/physiopathology , Liver Cirrhosis/therapy , Liver Regeneration , Liver/injuries , Animals , Cell Count , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Gene Ontology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammation/pathology , Liver/drug effects , Liver/pathology , Liver Regeneration/drug effects , Macrophages/drug effects , Macrophages/pathology , Male , Metabolic Networks and Pathways/drug effects , Mice, Inbred C57BL , Solubility , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...