Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Biomembr ; 1864(6): 183886, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35143742

ABSTRACT

The stratum corneum's lipid matrix is a critical for the skin's barrier function and is primarily composed of ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The lipids form a long periodicity phase (LPP), a unique trilayer unit cell structure. An enzyme driven pathway is implemented to synthesize these key lipids. If these enzymes are down- or upregulated as in inflammatory diseases, the final lipid composition is affected often altering the barrier function. In this study, we mimicked down regulation of enzymes involved in the synthesis of the sphingosine and CER amide bond. In a LPP lipid model, we substituted CER N-(tetracosanoyl)-sphingosine (CER NS) with either i) FFA C24 and free sphingosine, to simulate the loss of the CER amide bond, or ii) with FFA C24 and C18 to simulate the loss of the sphingosine headgroup. Our study shows the lipids in the LPP would not phase separate until at least 25% of the CER NS is substituted keeping the lateral packing and conformational ordering unaltered. Neutron diffraction studies showed that free sphingosine chains localized at the outer layers of the unit cell, while the remaining CER NS head group was concentrated in the inner headgroup layers. However, when FFA C18 was inserted, CER NS was dispersed throughout the LPP, resulting in an even distribution between the inner and outer water layers. The presented results highlight the importance of the CER NS headgroup structure and its interaction in combination with the carbon chain invariability for optimal lipid arrangement.


Subject(s)
Ceramides , Sphingosine , Ceramides/chemistry , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/chemistry , Neutron Diffraction , Skin/chemistry
2.
J Mater Chem B ; 10(10): 1612-1622, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35179543

ABSTRACT

Gold nanorods (GNRs) are versatile asymmetric nanoparticles with unique optical properties. These properties make GNRs ideal agents for applications such as photothermal cancer therapy, biosensing, and in vivo imaging. However, as-synthesised GNRs need to be modified with a biocompatible stabilising coating in order to be employed in these fields as the ligands used to stabilise GNRs during synthesis are toxic. An issue is that GNR performance in the aforementioned techniques can be affected by these modified coatings. For example if coatings are too thick then GNR entry into cells, or their sensitivity in sensing applications, can be compromised. Here we show that thiolated peptide amphiphiles (PAs) can act as GNR stabilisers and provide a thin and highly-stable coating under physiologically relevant conditions. Additionally, all tested PAs formed highly ordered (51.8-58.8% ß-content), and dense (2.62-3.87 peptides per nm2) monolayers on the GNR surface. Moreover, the PA-coated GNRs demonstrated no cytotoxicity in vitro and, via injection in zebrafish embryos, the behavior and cellular interactions of such PA-coated GNRs were visualised in vivo, in real time, with two-photon (2P) microscopy.


Subject(s)
Gold , Nanotubes , Animals , Cell Line, Tumor , Gold/chemistry , Nanotubes/chemistry , Peptides , Zebrafish
3.
Chem Phys Lipids ; 240: 105121, 2021 10.
Article in English | MEDLINE | ID: mdl-34352254

ABSTRACT

The stratum corneum (SC) acts as the main barrier of the skin against exogenous substances (e.g. air pollutants) and against the loss of endogenous substances such as water. The SC consists of keratin-rich dead cells surrounded by crystalline lamellar lipid regions. The main lipid classes are ceramides (CERs), free fatty acids (FFAs), and cholesterol (CHOL). Tropospheric ozone (O3) is a potent oxidant compound that reacts instantly with biological molecules such as lipids and proteins. Although it has been reported that O3 induces biological responses at the cellular level, to the best of our knowledge, there is no information related to the damages O3 can cause at the level of the SC extracellular lipid matrix. The aim of our work was to investigate which SC lipid subclasses are prone to oxidation when exposed to O3 and how the changes in chemical structures affect the lipid organization in a stratum corneum substitute (SCS) membrane. Ultimately, the barrier properties of the SCS were examined. Our studies revealed that O3 induces chemical modifications of the unsaturated bonds in CERs and CHOL. The appearance of carbonyl groups at the headgroup level and the removal of the linoleate moiety of omega­O­acylceramides (CER EOS) impact the lamellar organization of the lipid assembly and to a lesser extent the lateral packing of the lipids. Unexpectedly, these changes improved the barrier function of the SCS.


Subject(s)
Lipids/chemistry , Ozone/metabolism , Skin/metabolism , Ozone/chemistry , Skin/chemistry
4.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071405

ABSTRACT

In vitro skin tissue engineering is challenging due to the manifold differences between the in vivo and in vitro conditions. Yet, three-dimensional (3D) human skin equivalents (HSEs) are able to mimic native human skin in many fundamental aspects. However, the epidermal lipid barrier formation, which is essential for the functionality of the skin barrier, remains compromised. Recently, HSEs with an improved lipid barrier formation were generated by (i) incorporating chitosan in the dermal collagen matrix, (ii) reducing the external oxygen level to 3%, and (iii) inhibiting the liver X receptor (LXR). In this study, we aimed to determine the synergic effects in full-thickness models (FTMs) with combinations of these factors as single-, double-, and triple-targeted optimization approaches. The collagen-chitosan FTM supplemented with the LXR inhibitor showed improved epidermal morphogenesis, an enhanced lipid composition, and a better lipid organization. Importantly, barrier functionality was improved in the corresponding approach. In conclusion, our leading optimization approach substantially improved the epidermal morphogenesis, barrier formation, and functionality in the FTM, which therefore better resembled native human skin.


Subject(s)
Epidermal Cells/metabolism , Epidermis/metabolism , Morphogenesis , Skin/metabolism , Tissue Engineering/methods , Cells, Cultured , Chitosan/metabolism , Chromatography, Liquid , Collagen/metabolism , Epidermis/growth & development , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Lipid Metabolism , Lipids/analysis , Liver X Receptors/metabolism , Mass Spectrometry , Scattering, Small Angle , Skin/cytology , Skin/growth & development , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916267

ABSTRACT

The skin's barrier ability is an essential function for terrestrial survival, which is controlled by intercellular lipids within the stratum corneum (SC) layer. In this barrier, free fatty acids (FFAs) are an important lipid class. As seen in inflammatory skin diseases, when the lipid chain length is reduced, a reduction in the barrier's performance is observed. In this study, we have investigated the contributing effects of various FFA chain lengths on the lamellar phase, lateral packing. The repeat distance of the lamellar phase increased with FFA chain length (C20-C28), while shorter FFAs (C16 to C18) had the opposite behaviour. While the lateral packing was affected, the orthorhombic to hexagonal to fluid phase transitions were not affected by the FFA chain length. Porcine SC lipid composition mimicking model was then used to investigate the proportional effect of shorter FFA C16, up to 50% content of the total FFA mixture. At this level, no difference in the overall lamellar phases and lateral packing was observed, while a significant increase in the water permeability was detected. Our results demonstrate a FFA C16 threshold that must be exceeded before the structure and barrier function of the long periodicity phase (LPP) is affected. These results are important to understand the lipid behaviour in this unique LPP structure as well as for the understanding, treatment, and development of inflammatory skin conditions.


Subject(s)
Fatty Acids, Nonesterified/metabolism , Lipid Metabolism , Skin/metabolism , Fatty Acids, Nonesterified/chemistry , Permeability , Skin/chemistry
6.
Langmuir ; 36(34): 10270-10278, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32816488

ABSTRACT

Understanding the structure of the stratum corneum (SC) is essential to understand the skin barrier process. The long periodicity phase (LPP) is a unique trilayer lamellar structure located in the SC. Adjustments in the composition of the lipid matrix, as in many skin abnormalities, can have severe effects on the lipid organization and barrier function. Although the location of individual lipid subclasses has been identified, the lipid conformation at these locations remains uncertain. Contrast variation experiments via small-angle neutron diffraction were used to investigate the conformation of ceramide (CER) N-(tetracosanoyl)-sphingosine (NS) within both simplistic and porcine mimicking LPP models. To identify the lipid conformation of the twin chain CER NS, the chains were individually deuterated, and their scattering length profiles were calculated to identify their locations in the LPP unit cell. In the repeating trilayer unit of the LPP, the acyl chain of CER NS was located in the central and outer layers, while the sphingosine chain was located exclusively in the middle of the outer layers. Thus, for the CER NS with the acyl chain in the central layer, this demonstrates an extended conformation. Electron density distribution profiles identified that the lipid structure remains consistent regardless of the lipid's lateral packing phase, this may be partially due to the anchoring of the extended CER NS. The presented results provide a more detailed insight on the internal arrangement of the LPP lipids and how they are expected to be arranged in healthy skin.


Subject(s)
Ceramides , Sphingosine , Animals , Epidermis , Lipids , Skin , Swine
7.
ACS Nano ; 14(5): 5874-5886, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32348119

ABSTRACT

The functionalization of gold nanoparticles (GNPs) with peptidic moieties can prevent their aggregation and facilitate their use for applications both in vitro and in vivo. To date, no peptide-based coating has been shown to stabilize GNPs larger than 30 nm in diameter; such particles are of interest for applications including vaccine development, drug delivery, and sensing. Here, GNPs with diameters of 20, 40, and 100 nm are functionalized with peptide amphiphiles. Using a combination of transmission electron microscopy, UV-vis spectroscopy, and dynamic light scattering, we show that GNPs up to 100 nm in size can be stabilized by these molecules. Moreover, we demonstrate that these peptide amphiphiles form curvature-dependent, ordered structures on the surface of the GNPs and that the GNPs remain disperse at high-salt concentrations and in the presence of competing thiol-containing molecules. These results represent the development of a peptide amphiphile-based coating system for GNPs which has the potential to be beneficial for a wide range of biological applications, in addition to image enhancement and catalysis.


Subject(s)
Gold , Metal Nanoparticles , Dynamic Light Scattering , Microscopy, Electron, Transmission , Peptides
8.
Article in English | MEDLINE | ID: mdl-31863970

ABSTRACT

Scavenger receptor class B type I (SR-BI) mediates the selective uptake of cholesteryl esters (CE) from high-density lipoproteins (HDL). An impaired SR-BI function leads to hyperalphalipoproteinemia with elevated levels of cholesterol transported in the HDL fraction. Accumulation of cholesterol in apolipoprotein B (apoB)-containing lipoproteins has been shown to alter skin lipid composition and barrier function in mice. To investigate whether these hypercholesterolemic effects on the skin also occur in hyperalphalipoproteinemia, we compared skins of wild-type and SR-BI knockout (SR-BI-/-) mice. SR-BI deficiency did not affect the epidermal cholesterol content and induced only minor changes in the ceramide subclasses. The epidermal free fatty acid (FFA) pool was, however, enriched in short and unsaturated chains. Plasma CE levels strongly correlated with epidermal FFA C18:1 content. The increase in epidermal FFA coincided with downregulation of cholesterol and FFA synthesis genes, suggesting a compensatory response to increased flux of plasma cholesterol and FFAs into the skin. Importantly, the SR-BI-/- epidermal lipid barrier showed increased permeability to ethyl-paraminobenzoic acid, indicating an impairment of the barrier function. In conclusion, increased HDL-cholesterol levels in SR-BI-/- mice can alter the epidermal lipid composition and lipid barrier function similarly as observed in hypercholesterolemia due to elevated levels of apoB-containing lipoproteins.


Subject(s)
Cholesterol Ester Transfer Proteins/deficiency , Epidermis/metabolism , Lipid Metabolism, Inborn Errors/metabolism , 4-Aminobenzoic Acid/pharmacokinetics , Animals , Apolipoproteins B/metabolism , CD36 Antigens/genetics , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol Esters/blood , Cholesterol Esters/metabolism , Epidermis/pathology , Fatty Acids, Unsaturated/metabolism , Female , Lecithins/genetics , Lecithins/metabolism , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Mice , Mice, Inbred C57BL
9.
Int J Mol Sci ; 20(23)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810180

ABSTRACT

The outermost barrier layer of the skin is the stratum corneum (SC), which consists of corneocytes embedded in a lipid matrix. Biosynthesis of barrier lipids occurs de novo in the epidermis or is performed with externally derived lipids. Hence, in vitro developed human skin equivalents (HSEs) are developed with culture medium that is supplemented with free fatty acids (FFAs). Nevertheless, the lipid barrier formation in HSEs remains altered compared to native human skin (NHS). The aim of this study is to decipher the role of medium supplemented saturated FFA palmitic acid (PA) on morphogenesis and lipid barrier formation in HSEs. Therefore, HSEs were developed with 100% (25 µM), 10%, or 1% PA. In HSEs supplemented with reduced PA level, the early differentiation was delayed and epidermal activation was increased. Nevertheless, a similar SC lipid composition in all HSEs was detected. Additionally, the lipid organization was comparable for lamellar and lateral organization, irrespective of PA concentration. As compared to NHS, the level of monounsaturated lipids was increased and the FFA to ceramide ratio was drastically reduced in HSEs. This study describes the crucial role of PA in epidermal morphogenesis and elucidates the role of PA in lipid barrier formation of HSEs.


Subject(s)
Fatty Acids, Nonesterified/metabolism , Lipogenesis/drug effects , Palmitic Acid/pharmacology , Skin, Artificial , Cell Differentiation/drug effects , Cells, Cultured , Ceramides/metabolism , Epidermal Cells/metabolism , Epidermis/growth & development , Epidermis/metabolism , Humans , Keratinocytes/metabolism , Lipid Metabolism/drug effects , Lipids/biosynthesis , Lipids/chemistry , Morphogenesis/drug effects , Palmitic Acid/chemistry , Skin/chemistry , Skin/drug effects , Skin/metabolism
10.
Arch Dermatol Res ; 311(9): 679-689, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31321505

ABSTRACT

Relative humidity (RH) levels vary continuously in vivo, although during in vitro generation of three-dimensional human skin equivalents (HSEs) these remain high (90-95%) to prevent evaporation of the cell-culture medium. However, skin functionality is directly influenced by environmental RH. As the barrier formation in HSEs is different, there is a need to better understand the role of cell-culture conditions during the generation of HSEs. In this study, we aim to investigate the effects of RH on epidermal morphogenesis and lipid barrier formation in HSEs. Therefore, two types of HSEs were developed at 90% or at 60% RH. Assessments were performed to determine epidermal morphogenesis by immunohistochemical analyses, ceramide composition by lipidomic analysis, and lipid organization by Fourier transform infrared spectroscopy and small-angle X-ray diffraction. We show that reduction of RH mainly affected the uppermost viable epidermal layers in the HSEs, including an enlargement of the granular cells and induction of epidermal cell activation. Neither the composition nor the organization of the lipids in the intercorneocyte space were substantially altered at reduced RH. In addition, lipid processing from glucosylceramides to ceramides was not affected by reduced RH in HSEs as shown by enzyme expression, enzyme activity, and substrate-to-product ratio. Our results demonstrate that RH directly influences epidermal morphogenesis, albeit the in vitro lipid barrier formation is comparable at 90% and 60% RH.


Subject(s)
Bioartificial Organs , Epidermis/growth & development , Humidity , Lipid Metabolism/physiology , Adult , Cell Culture Techniques , Cells, Cultured , Epidermal Cells , Epidermis/metabolism , Female , Humans , Morphogenesis , Primary Cell Culture
11.
Sci Rep ; 9(1): 7811, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127151

ABSTRACT

Human skin equivalents (HSEs) are three-dimensional cell models mimicking characteristics of native human skin (NHS) in many aspects. However, a limitation of HSEs is the altered in vitro morphogenesis and barrier formation. Differences between in vitro and in vivo skin could have been induced by suboptimal cell culture conditions, of which the level of oxygen in vitro (20%) is much higher than in vivo (0.5-8%). Our aim is to study how external oxygen levels affect epidermal morphogenesis and barrier formation in HSEs. In the present study, fibroblast and keratinocyte monocultures, and HSEs were generated under 20% (normoxia) and 3% (hypoxia) oxygen level. In all cultures under hypoxia, expression of hypoxia-inducible factor target genes was increased. Characterization of HSEs generated under hypoxia using immunohistochemical analyses of morphogenesis biomarkers revealed a reduction in epidermal thickness, reduced proliferation, similar early differentiation, and an attenuated terminal differentiation program compared to normoxia, better mimicking NHS. The stratum corneum ceramide composition was studied with liquid chromatography coupled to mass spectrometry. Under hypoxia, HSEs exhibited a ceramide composition that more closely resembles that of NHS. Consequently, the lipid organization was improved. In conclusion, epidermal morphogenesis and barrier formation in HSEs reconstructed under hypoxia better mimics that of NHS.


Subject(s)
Epidermis/growth & development , Fibroblasts/cytology , Keratinocytes/cytology , Skin/growth & development , Cell Hypoxia , Cells, Cultured , Epidermis/metabolism , Epidermis/ultrastructure , Fibroblasts/metabolism , Humans , Keratinocytes/metabolism , Lipid Metabolism , Skin/metabolism , Skin/ultrastructure , Tissue Engineering/methods
12.
J Tissue Eng Regen Med ; 13(7): 1122-1133, 2019 07.
Article in English | MEDLINE | ID: mdl-30945465

ABSTRACT

Human skin equivalents (HSEs) are in vitro developed three-dimensional models resembling native human skin (NHS) to a high extent. However, the epidermal lipid biosynthesis, barrier lipid composition, and organization are altered, leading to an elevated diffusion rate of therapeutic molecules. The altered lipid barrier formation in HSEs may be induced by standardized culture conditions, including a culture temperature of 37°C, which is dissimilar to skin surface temperature. Therefore, we aim to determine the influence of culture temperature during the generation of full thickness models (FTMs) on epidermal morphogenesis and lipid barrier formation. For this purpose, FTMs were developed at conventional core temperature (37°C) or lower temperatures (35°C and 33°C) and evaluated over a time period of 4 weeks. The stratum corneum (SC) lipid composition was analysed using advanced liquid chromatography coupled to mass spectrometry analysis. Our results show that SC layers accumulated at a similar rate irrespective of culture temperature. At reduced culture temperature, an increased epidermal thickness, a disorganization of the lower epidermal cell layers, a delayed early differentiation, and an enlargement of granular cells were detected. Interestingly, melanogenesis was reduced at lower temperature. The ceramide subclass profile, chain length distribution, and level of unsaturated ceramides were similar in FTMs generated at 37°C and 35°C but changed when generated at 33°C, reducing the resemblance to NHS. Herein, we report that culture temperature affects epidermal morphogenesis substantially and to a lesser extent the lipid barrier formation, highlighting the importance of optimized external parameters during reconstruction of skin.


Subject(s)
Ceramides/metabolism , Epidermis/metabolism , Keratinocytes/metabolism , Lipid Metabolism , Models, Biological , Temperature , Adult , Female , Humans
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(7): 976-984, 2019 07.
Article in English | MEDLINE | ID: mdl-30905828

ABSTRACT

Long-term exposure to hypercholesterolemia induces the development of skin xanthoma's characterized by the accumulation of lipid-laden foam cells in humans and in mice. Early skin changes in response to hypercholesterolemia are however unknown. In this study, we investigated the skin lipid composition and associated barrier function in young adult low-density lipoprotein receptor knockout (LDLR-/-) and apolipoprotein E knockout (APOE-/-) mice, two commonly used hypercholesterolemic mouse models characterized by the accumulation of apolipoprotein B containing lipoproteins. No differences were observed on cholesterol content in the epidermis in LDLR-/- mice nor in the more extremely hypercholesterolemic APOE-/- mice. Interestingly, the free fatty acid profile in the APOE-/- epidermis shifted towards shorter and unsaturated chains. Genes involved in the synthesis of cholesterol and fatty acids were downregulated in APOE-/- skin suggesting a compensation for the higher influx of plasma lipids, most probably as cholesteryl esters. Importantly, in vivo transepidermal water loss and permeability studies with murine lipid model membranes revealed that the lipid composition of the APOE-/- skin resulted in a reduced skin barrier function. In conclusion, severe hypercholesterolemia associated with increased apolipoprotein B containing lipoproteins affects the epidermal lipid composition and its protective barrier.


Subject(s)
Apolipoproteins E/genetics , Epidermis/chemistry , Hypercholesterolemia/physiopathology , Lipids/chemistry , Animals , Apolipoproteins B/metabolism , Apolipoproteins E/deficiency , Fatty Acids/metabolism , Hypercholesterolemia/metabolism , Lipids/analysis , Mice , Permeability , Receptors, LDL/genetics
14.
J Steroid Biochem Mol Biol ; 189: 19-27, 2019 05.
Article in English | MEDLINE | ID: mdl-30711472

ABSTRACT

Human skin equivalents (HSEs) are three dimensional models resembling native human skin (NHS) in many aspects. Despite the manifold similarities to NHS, a restriction in its applications is the altered in vitro lipid barrier formation, which compromises the barrier functionality. This could be induced by suboptimal cell culturing conditions, which amongst others is the diminished activation of the vitamin D receptor (VDR) signalling pathway. The active metabolite of this signalling pathway is 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). An interacting role in the formation of the skin barrier has been ascribed to this pathway, although it remains unresolved to which extent this pathway contributes to the (mal-)formation of the epidermal barrier in HSEs. Our aim is to study whether cell culture medium enriched with 1,25(OH)2D3 affects epidermal morphogenesis and lipid barrier formation in HSEs. Addition of 20 nM 1,25(OH)2D3 resulted in activation of the VDR signalling pathway by inducing transcription of VDR target genes (CYP24A and LL37) in keratinocyte monocultures and in HSEs. Characterization of HSEs supplemented with 1,25(OH)2D3 using immunohistochemical analyses revealed a high similarity in epidermal morphogenesis and in expression of lipid processing enzymes. The barrier formation was assessed using state-of-the art techniques analysing lipid composition and organization. Addition of 1,25(OH)2D3 did not alter the composition of ceramides. Additionally, the lateral and lamellar organization of the lipids was similar, irrespective of supplementation. In conclusion, epidermal morphogenesis and barrier formation in HSEs generated in presence or absence of 1,25(OH)2D3 leads to a similar morphogenesis and comparable barrier formation in vitro.


Subject(s)
Calcitriol/pharmacology , Epidermis/drug effects , Lipid Metabolism/drug effects , Vitamins/pharmacology , Calcitriol/metabolism , Cells, Cultured , Epidermis/metabolism , Epidermis/ultrastructure , Humans , Receptors, Calcitriol/metabolism , Signal Transduction/drug effects , Tissue Engineering , Vitamins/metabolism
15.
J Lipid Res ; 59(12): 2329-2338, 2018 12.
Article in English | MEDLINE | ID: mdl-30333154

ABSTRACT

The lipid matrix of the stratum corneum, the outermost skin layer, consists primarily of ceramides, cholesterol, and FFAs. These lipids form a trilayer long-periodicity phase (LPP) that is unique to this barrier. Knowledge about the LPP is essential in understanding the barrier function. Previous studies of LPP lipid models have identified the position of the major lipid classes and suggested that a large fraction of FFAs and the ceramide acyl chain are present in the central region. However, the precise arrangement, such as lipid subclass mixing (isolated or mixed) and ceramide conformation (extended or hairpin), remains unknown. Here, we deuterated FFAs and the ceramide acyl chain to study CD2 and CH2 interactions with Fourier-transform infrared spectroscopy. The ceramide and FFAs of various chain lengths were not in separate domains but had mixed together. The larger number of CD2-CD2 lipid chain interactions in the LPP than in a symmetrical bilayer structure implied that the ceramide had primarily adopted an extended conformation. Shorter FFAs were present in the central region of the LPP. This model explores the biophysical properties of the stratum corneum's LPP to improve the understanding of the barrier function of this layer.


Subject(s)
Carbon Dioxide/chemistry , Ceramides/chemistry , Fatty Acids, Nonesterified/chemistry , Lipids/chemistry , Spectroscopy, Fourier Transform Infrared
16.
Pharm Res ; 35(3): 48, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29411158

ABSTRACT

PURPOSE: To determine whether formulations containing ceramides (including a ceramide with a long hydroxyl acyl chain linked to a linoleate, CER EOS) and fatty acids are able to repair the skin barrier by normalizing the lipid organization in stratum corneum (SC). METHODS: The formulations were applied on a skin barrier repair model consisting of ex vivo human skin from which SC was removed by stripping. The effect of formulations on the lipid organization and conformational ordering in the regenerated SC were analyzed using Fourier transform infrared spectroscopy and small angle X-ray diffraction. RESULTS: Application of the formulation containing only one ceramide on regenerating SC resulted in a higher fraction of lipids adopting an orthorhombic organization. A similar fraction of lipids forming an orthorhombic organization was observed after application of a formulation containing two ceramides and a fatty acid on regenerating SC. No effects on the lamellar lipid organization were observed. CONCLUSIONS: Application of a formulation containing either a single ceramide or two ceramides and a fatty acid on regenerating SC, resulted in a denser lateral lipid packing of the SC lipids in compromised skin. The strongest effect was observed after application of a formulation containing a single ceramide.


Subject(s)
Ceramides/pharmacology , Epidermis/physiology , Fatty Acids/pharmacology , Lipids/chemistry , Regeneration/drug effects , Administration, Cutaneous , Drug Combinations , Epidermis/chemistry , Epidermis/drug effects , Humans , Molecular Conformation/drug effects , Skin Absorption/drug effects , Tissue Culture Techniques
17.
Q Rev Biophys ; 51: e7, 2018 01.
Article in English | MEDLINE | ID: mdl-30912496

ABSTRACT

The outer layer of the skin, stratum corneum (SC) is an efficient transport barrier and it tolerates mechanical deformation. At physiological conditions, the majority of SC lipids are solid, while the presence of a small amount of fluid lipids is considered crucial for SC barrier and material properties. Here we use solid-state and diffusion nuclear magnetic resonance to characterize the composition and molecular dynamics of the fluid lipid fraction in SC model lipids, focusing on the role of the essential SC lipid CER EOS, which is a ceramide esterified omega-hydroxy sphingosine linoleate with very long chain. We show that both rigid and mobile structures are present within the same CER EOS molecule, and that the linoleate segments undergo fast isotropic reorientation while exhibiting extraordinarily slow self-diffusion. The characterization of this unusual self-assembly in SC lipids provides deepened insight into the molecular arrangement in the SC extracellular lipid matrix and the role of CER EOS linoleate in the healthy and diseased skin.


Subject(s)
Ceramides/chemistry , Epidermis/chemistry , Diffusion , Esters/chemistry , Linoleic Acid/chemistry , Magnetic Resonance Spectroscopy , Membranes, Artificial , Molecular Conformation , Molecular Dynamics Simulation
18.
Acta Derm Venereol ; 98(4): 421-427, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29242945

ABSTRACT

Previously, a skin barrier repair model was developed to examine the effect of formulations on the lipid properties of compromised skin. In this model, the lipid organization mimics that of several skin diseases with impaired skin barrier and less dense lateral lipid organization. In addition, parakeratosis was occasionally observed. The present study investigated whether the extent of initial barrier disruption affects lipid organization and parakeratosis in regenerated stratum corneum. After barrier disruption and stratum corneum regeneration the fraction of lipids adopting a less dense lateral organization gradually increased with increasing degree of barrier disruption. Only when 75% of the stratum corneum was removed, were parakeratosis and a change in lamellar organization observed. This demonstrates the possibility of using the skin barrier repair model to study the effects of formulations on compromised skin in which the presence of parakeratosis and lipid organization can be modified by the extent of barrier disruption.


Subject(s)
Cell Proliferation , Membrane Lipids/metabolism , Parakeratosis/metabolism , Regeneration , Skin/metabolism , Adult , Aged , Humans , Parakeratosis/pathology , Permeability , Severity of Illness Index , Skin/pathology , Tissue Culture Techniques , Young Adult
19.
Biochim Biophys Acta Biomembr ; 1860(2): 526-533, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29175102

ABSTRACT

Skin barrier disruption plays a role in the pathogenesis of atopic dermatitis (AD) in humans. However, little is known about skin barrier (dys-) function in Canine Atopic Dermatitis. The properties of lipids located in the outermost layer of the skin, the stratum corneum (SC) are considered to be important for the barrier. In the present study the lipid composition and lipid organization of the SC of AD dogs and control dogs were examined. The lipid composition of lesional AD skin as compared to control skin, showed a reduced free fatty acid level and a decreased ratio of ceramide[NS] C44/C34, in which C44 and C34 are the total numbers of carbon atoms of the sphingosine (S) and non-hydroxy (N) acyl chains. As a consequence of the observed changes in lipid composition in AD lesional skin the lamellar organization of lipids altered and a shift from orthorhombic to hexagonal lipid packing was monitored. Simultaneously an increased conformational disordering occurred. These changes are expected to compromise the integrity of the skin barrier. The C44/C34 chain length ratio of ceramide[NS] also showed a decreasing nonlinear relationship with the AD severity score (CADESI). Taken together, canine atopic skin showed alterations in SC lipid properties, similar to the changes observed in atopic dermatitis in humans, that correlated with a disruption of the skin barrier. Hence lipids play an important role in the pathogenesis of Canine Atopic Dermatitis.


Subject(s)
Ceramides/metabolism , Dermatitis, Atopic/metabolism , Fatty Acids/metabolism , Lipids/analysis , Skin/chemistry , Animals , Chromatography, Thin Layer/methods , Dogs , Epidermis/chemistry , Epidermis/pathology , Humans , Mass Spectrometry , Scattering, Small Angle , Skin/pathology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
20.
J Lipid Res ; 59(1): 137-143, 2018 01.
Article in English | MEDLINE | ID: mdl-29092959

ABSTRACT

The stratum corneum (SC), the top layer of skin, dictates the rate of both water loss through the skin and absorption of exogenous molecules into the body. The crystalline organization of the lipids in the SC is believed to be a key feature associated with the very limited permeability of the skin. In this work, we characterized the organization of SC lipid models that include, as in native SC, cholesterol, a series of FFAs (saturated with C16-C24 chains), as well as a ceramide bearing an oleate chain-linked to a very long saturated acyl chain [N-melissoyl-oleoyloxy hexacosanoyl-D-erythro-sphingosine (Cer EOS)]. The latter is reported to be essential for the native SC lipid organization. Our 2H-NMR, infrared, and Raman spectroscopy data reveal that Cer EOS leads to the formation of highly disordered liquid domains in a solid/crystalline matrix. The lipid organization imposes steric constraint on Cer EOS oleate chains in such a way that these hydrocarbon nanodroplets remain in the liquid state down to -30°C. These findings modify the structural description of the SC substantially and propose a novel role of Cer EOS, as this lipid is a strong modulator of SC solid/liquid balance.


Subject(s)
Hydrocarbons/chemistry , Lipids/analysis , Models, Biological , Nanoparticles/chemistry , Skin/chemistry , Models, Molecular , Molecular Structure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...