Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747599

ABSTRACT

In this study, the new solid lipid nanoparticles were created by combining fluorescent dye, fatty acid, lipid, and bacterial outer membranes. The synthesised particles were roughly 95-100 nm in size. Vero cells cultivated with these nanoparticles showed no cytotoxicity in 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT) assay. In the cell uptake studies, the vero cell line was employed. Cell lines absorbed fluorescent solid lipid nanoparticles (FSL NPs) better, according to the findings. The confocal microscopy results revealed a significant accumulation of FSL NPs in the cytoplasm over time. The results of small animal imaging employing BALB/c mice revealed that the nanoparticles generated provided high contrast signals. Overall, the OMVs-based FSL NPs system offers a unique imaging tool for studying intracellular interactions as well as a viable tool for drug delivery.

2.
Front Public Health ; 11: 1041447, 2023.
Article in English | MEDLINE | ID: mdl-36960366

ABSTRACT

India's dense human and animal populations, agricultural economy, changing environment, and social dynamics support conditions for emergence/re-emergence of zoonotic diseases that necessitate a One Health (OH) approach for control. In addition to OH national level frameworks, effective OH driven strategies that promote local intersectoral coordination and collaboration are needed to truly address zoonotic diseases in India. We conducted a literature review to assess the landscape of OH activities at local levels in India that featured intersectoral coordination and collaboration and supplemented it with our own experience conducting OH related activities with local partners. We identified key themes and examples in local OH activities. Our landscape assessment demonstrated that intersectoral collaboration primarily occurs through specific research activities and during outbreaks, however, there is limited formal coordination among veterinary, medical, and environmental professionals on the day-to-day prevention and detection of zoonotic diseases at district/sub-district levels in India. Examples of local OH driven intersectoral coordination include the essential role of veterinarians in COVID-19 diagnostics, testing of human samples in veterinary labs for Brucella and leptospirosis in Punjab and Tamil Nadu, respectively, and implementation of OH education targeted to school children and farmers in rural communities. There is an opportunity to strengthen local intersectoral coordination between animal, human and environmental health sectors by building on these activities and formalizing the existing collaborative networks. As India moves forward with broad OH initiatives, OH networks and experience at the local level from previous or ongoing activities can support implementation from the ground up.


Subject(s)
COVID-19 , Leptospirosis , One Health , Animals , Child , Humans , India/epidemiology , Zoonoses/prevention & control
3.
Infect Drug Resist ; 16: 155-178, 2023.
Article in English | MEDLINE | ID: mdl-36636377

ABSTRACT

Background: Bovine mastitis is the most frequent and costly illness impacting dairy herds worldwide. The presence of subclinical mastitis in dairy cows has an impact on the decreased output of milk and milk quality, culling of affected cows, mortality rate, as well as mastitis-related treatment expenses, generating significant financial loss to the dairy industry. The pathogenic bacteria invade through the mammary gland, which then multiply in the milk-producing tissues causing infection, and the presence of pathogenic bacteria in milk is concerning, jeopardizes human health, and also has public health consequences. Intervention to promote herd health is essential to protect public health and the economy. Results: This review attempts to provide an overview of subclinical mastitis, including mastitis in different species, the effect of mastitis on human health and its pathogenic mechanism, the prevalence and incidence of subclinical mastitis, and current preventive, diagnostic, and treatment methods for subclinical mastitis. It also elaborates on the management practices that should be followed by the farms to improve herd immunity and health. Conclusion: This review brings the importance of the threat of antimicrobial resistance organisms to the dairy industry. Furthermore, this review gives a glimpse of the economic consequences faced by the farmers and a futuristic mastitis market analysis in the dairy industry.

4.
Front Vet Sci ; 9: 814227, 2022.
Article in English | MEDLINE | ID: mdl-35498753

ABSTRACT

The Bacillus Calmette-Guérin (BCG) vaccination provides partial protection against, and reduces severity of pathological lesions associated with bovine tuberculosis (bTB) in cattle. Accumulating evidence also suggests that revaccination with BCG may be needed to enhance the duration of immune protection. Since BCG vaccine cross-reacts with traditional tuberculin-based diagnostic tests, a peptide-based defined antigen skin test (DST) comprising of ESAT-6, CFP-10, and Rv3615c to detect the infected among the BCG-vaccinated animals (DIVA) was recently described. The DST reliably identifies bTB-infected animals in experimental challenge models and in natural infection settings, and differentiated these from animals immunized with a single dose of BCG in both skin tests and interferon-gamma release assay (IGRA). The current investigation sought to assess the diagnostic specificity of DST in calves (Bos taurus ssp. taurus × B. t. ssp. indicus; n = 15) revaccinated with BCG 6 months after primary immunization. The results show that none of the 15 BCG-revaccinated calves exhibited a delayed hypersensitivity response when skin tested with DST 61 days post-revaccination, suggesting 100% diagnostic specificity (one-tailed lower 95% CI: 82). In contrast, 8 of 15 (diagnostic specificity = 47%; 95% CI: 21, 73) BCG-revaccinated calves were positive per the single cervical tuberculin (SCT) test using bovine tuberculin. Together, these results show that the DST retains its specificity even after revaccination with BCG and confirms the potential for implementation of BCG-based interventions in settings where test-and-slaughter are not economically or culturally feasible.

5.
Open Forum Infect Dis ; 7(11): ofaa434, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33200080

ABSTRACT

BACKGROUND: From an isolated epidemic, coronavirus disease 2019 has now emerged as a global pandemic. The availability of genomes in the public domain after the epidemic provides a unique opportunity to understand the evolution and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus across the globe. METHODS: We performed whole-genome sequencing of 303 Indian isolates, and we analyzed them in the context of publicly available data from India. RESULTS: We describe a distinct phylogenetic cluster (Clade I/A3i) of SARS-CoV-2 genomes from India, which encompasses 22% of all genomes deposited in the public domain from India. Globally, approximately 2% of genomes, which to date could not be mapped to any distinct known cluster, fall within this clade. CONCLUSIONS: The cluster is characterized by a core set of 4 genetic variants and has a nucleotide substitution rate of 1.1 × 10-3 variants per site per year, which is lower than the prevalent A2a cluster. Epidemiological assessments suggest that the common ancestor emerged at the end of January 2020 and possibly resulted in an outbreak followed by countrywide spread. To the best of our knowledge, this is the first comprehensive study characterizing this cluster of SARS-CoV-2 in India.

6.
Front Vet Sci ; 7: 391, 2020.
Article in English | MEDLINE | ID: mdl-32793643

ABSTRACT

In most low- and middle-income countries (LMICs), bovine tuberculosis (bTB) remains endemic due to the absence of control programs. This is because successful bTB control and eradication programs have relied on test-and-slaughter strategies that are socioeconomically unfeasible in LMICs. While Bacillus Calmette-Guérin (BCG) vaccine-induced protection for cattle has long been documented in experimental and field trials, its use in control programs has been precluded by the inability to differentiate BCG-vaccinated from naturally infected animals using the OIE-prescribed purified protein derivative (PPD)-based tuberculin skin tests. In the current study, the diagnostic specificity and capability for differentiating infected from vaccinated animals (DIVA) of a novel defined antigen skin test (DST) in BCG-vaccinated (Bos taurus ssp. taurus x B. t. ssp. indicus) calves were compared with the performance of traditional PPD-tuberculin in both the skin test and in vitro interferon-gamma release assay (IGRA). The IFN-γ production from whole blood cells stimulated with both PPDs increased significantly from the 0 week baseline levels, while DST induced no measurable IFN-γ production in BCG-vaccinated calves. None of the 15 BCG-vaccinated calves were reactive with the DST skin test (100% specificity; one-tailed lower 95% CI: 82). In contrast, 10 of 15 BCG-vaccinated calves were classified as reactors with the PPD-based single intradermal test (SIT) (specificity in vaccinated animals = 33%; 95% CI: 12, 62). Taken together, the results provide strong evidence that the DST is highly specific and enables DIVA capability in both skin and IGRA assay format, thereby enabling the implementation of BCG vaccine-based bTB control, particularly in settings where test and slaughter remain unfeasible.

7.
Nanoscale Res Lett ; 12(1): 116, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28228001

ABSTRACT

Progesterone is a potent drug for synchronization of the estrus and ovulation cycles in bovine. At present, the estrus cycle of bovine is controlled by the insertion of progesterone-embedded silicone bands. The disadvantage of nondegradable polymer inserts is to require for disposal of these bands after their use. The study currently focuses on preparation of biodegradable progesterone-incorporated nanofiber for estrus synchronization. Three different concentrations (1.2, 1.9, and 2.5 g) of progesterone-impregnated nanofibers were fabricated using electrospinning. The spun membrane were characterized by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Uniform surface morphology, narrow size distribution, and interaction between progesterone and zein were confirmed by SEM. FTIR spectroscopy indicated miscibility and interaction between zein and progesterone. X-ray analysis indicated that the size of zein crystallites increased with progesterone content in nanofibers. Significant differences in thermal behavior of progesterone-impregnated nanofiber were observed by DSC. Cell viability studies of progesterone-loaded nanofiber were examined using MTT assay. In vitro release experiment is to identify the suitable progesterone concentration for estrus synchronization. This study confirms that progesterone-impregnated nanofibers are an ideal vehicle for progesterone delivery for estrus synchronization of bovines.

8.
PLoS One ; 9(6): e100018, 2014.
Article in English | MEDLINE | ID: mdl-24956167

ABSTRACT

From an immunologist perspective, sharks are an important group of jawed cartilaginous fishes and survey of the public database revealed a great gap in availability of large-scale sequence data for the group of Chondrichthyans the elasmobranchs. In an attempt to bridge this deficit we generated the transcriptome from the spleen and kidney tissues (a total of 1,606,172 transcripts) of the shark, Chiloscyllium griseum using the Illumina HiSeq2000 platform. With a cut off of > = 300 bp and an expression value of >1RPKM we used 43,385 transcripts for BLASTX analysis which revealed 17,548 transcripts matching to the NCBI nr database with an E-value of < = 10(-5) and similarity score of 40%. The longest transcript was 16,974 bases with matched to HECT domain containing E3 ubiqutin protein ligase. MEGAN4 annotation pipeline revealed immune and signalling pathways including cell adhesion molecules, cytokine-cytokine receptor interaction, T-cell receptor signalling pathway and chemokine signaling pathway to be highly expressed in spleen, while different metabolism pathways such as amino acid metabolism, carbohydrate metabolism, lipid metabolism and xenobiotic biodegradation were highly expressed in kidney. Few of the candidate genes were selected to analyze their expression levels in various tissues by real-time PCR and also localization of a receptor by in-situ PCR to validate the prediction. We also predicted the domains structures of some of the identified pattern recognition receptors, their phylogenetic relationship with lower and higher vertebrates and the complete downstream signaling mediators of classical dsRNA signaling pathway. The generated transcriptome will be a valuable resource to further genetic and genomic research in elasmobranchs.


Subject(s)
Fish Proteins/biosynthesis , Gene Expression Profiling , Receptors, Pattern Recognition/biosynthesis , Sharks/metabolism , Transcriptome/physiology , Animals , Fish Proteins/genetics , Receptors, Pattern Recognition/genetics , Sharks/genetics
9.
J Clin Microbiol ; 50(3): 961-5, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22170920

ABSTRACT

A loop-mediated isothermal amplification (LAMP) method for the rapid detection of serotype 1 Marek's disease virus (MDV) was developed. The method used a set of three pairs of primers to amplify the MEQ gene for detecting serotype 1 MDV. The MDV LAMP method did not cross-react with serotype 2 and serotype 3, nor did the LAMP primers have binding sites for the common avian DNA viruses (reticuloendotheliosis virus, chicken anemia virus, subgroup J of the avian leukosis virus). Additionally, the assay could detect up to 10 copies of the MEQ gene in the MD viral genome, and it had 10 times higher sensitivity than the traditional PCR methods. The LAMP master mix was stable for 90 days at -20°C. Furthermore, the efficiency of LAMP for detection of serotype 1 MDV in clinical samples was comparable to those of PCR and viral isolation. The LAMP procedure is simple and does not rely on any special equipment. The detection of serotype 1 MDV by LAMP will be useful for detecting and controlling oncogenic Marek's disease.


Subject(s)
Feathers/virology , Mardivirus/isolation & purification , Marek Disease/diagnosis , Marek Disease/virology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Virology/methods , Animals , Chickens , DNA Primers/genetics , DNA, Viral/genetics , DNA, Viral/isolation & purification , Oncogene Proteins, Viral/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...