Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(12): 7921-7928, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36909754

ABSTRACT

A hybrid piezo/triboelectric nanogenerator (H/P-TENG) is designed for mechanical energy harvesting using polymer ceramic composite films; polydimethylsiloxane/Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (PDMS/BZT-BCT) and polyvinyl alcohol (PVA). A lead-free BZT-BCT piezoelectric ceramic was prepared via solid-state method and blended into PDMS to form a series of polymer-ceramic composite films, ranging from 5% to 30% by weight. The films were forward/reverse poled with corona poling and their electrical properties were compared to non-poled samples. The H/P-TENG constructed with forward-poled 15 wt% BZT-BCT in PDMS achieved the highest open-circuit voltage, V oc of 127 V, short-circuit current density, J sc of 67 mA m-2, short-circuit charge density, Q sc of 118 µC m-2, and peak power density of 7.5 W m-2, an increase of 190% over pristine PDMS-based TENG. It was discovered that incorporating BZT-BCT into the PDMS matrix improved the triboelectric properties of PDMS. The overlapping electron cloud (OEC) model was used to explain the enhancement and the effect of poling direction of the PDMS/BZT-BCT composite used in H/P-TENG, providing fundamental knowledge of the influence of piezoelectric polarisation on contact electrification.

2.
Sci Rep ; 9(1): 15263, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31649296

ABSTRACT

Mechanotransduction by hair cell stereocilia lies at the heart of sound detection in vertebrates. Considerable effort has been put forth to identify proteins that comprise the hair cell mechanotransduction apparatus. TMC1, a member of the transmembrane channel-like (TMC) family, was identified as a core protein of the mechanotransduction complex in hair cells. However, the inability of TMC1 to traffic through the endoplasmic reticulum in heterologous cellular systems has hindered efforts to characterize its function and fully identify its role in mechanotransduction. We developed a novel approach that allowed for the detection of uncharacterized protein regions, which preclude trafficking to the plasma membrane (PM) in heterologous cells. Tagging N-terminal fragments of TMC1 with Aquaporin 3 (AQP3) and GFP fusion reporter, which intrinsically label PM in HEK293 cells, indicated that residues at the edges of amino acid sequence 138-168 invoke intracellular localization and/or degradation. This signal is able to preclude surface localization of PM protein AQP3 in HEK293 cells. Substitutions of the residues by alanine or serine corroborated that the information determining the intracellular retention is present within amino acid sequence 138-168 of TMC1 N-terminus. This novel signal may preclude the proper trafficking of TMC1 to the PM in heterologous cells.


Subject(s)
Cell Membrane/metabolism , Membrane Proteins/metabolism , Animals , Cell Line , HEK293 Cells , Hair Cells, Auditory/metabolism , Humans , Mechanotransduction, Cellular/physiology , Mice , Protein Transport/physiology , Stereocilia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...