Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Environ Manage ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37775671

ABSTRACT

The Indian agriculture is highly vulnerable to climate change which adversely affects crop production and livelihood of farmers. The effect is more intensified in Vindhyan highlands, where prolong drought and high rate of poverty exist in depredation environment. In this context, present study conducted to explore farmers' perception, attitude about climate change and adaptive capabilities. We undertook an interview schedules survey through structured questionnaire in Duddhi block of Sonbhadra district. A total of 400 households were selected in which 347 (86.75%) male and 53 (13.25%) female respondents have participated. The perception of farmers on climate change is presented in SI (severity index) which varies from 36% to 68.63%. The statement 'rainy season decreases' ranked first with SI (68.63%) followed by 'temperature increases' SI (66.06%). This investigation identified 17 types of adaptive practices which are frequently performed in the Vindhyan highlands. Based on the WAI (Weighted Average Index) score, crop diversification (2.0), cultivation of drought-adapted crop varieties (1.99), changing plantation calendar (1.95) were the most adopted practices. Multiple regression analysis between the socio-economic status of farmers and the adaptation practices, recorded a significant positive relationship with age (P < 0.01), family size (P < 0.05), education (P < 0.01), caste categories (P < 0.05) and livestock ownership (P < 0.01) of farmer. This study will be helpful in developing drought resilience farming practices for sustaining the livelihood of farmers and inform policy making.

2.
Int J Biol Macromol ; 251: 126397, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37597640

ABSTRACT

The study deals with the isolation, purification and characterization of galactomannan from the endosperm of Borassus labellifer (Linn.) to be used for biomaterial fabrication in tissue engineering (TE) applications. The isolated Borassus flabellifer (Linn.) galactomannan (BFG) through a sequential aqueous dissolution, centrifugation and ethanol precipitation presented a total yield of 19.77 ± 1.05 % (w/w) with advantageous compositional and functional properties. BFG was found to have mannose to galactose (M/G) ratio of 1.4:1. The molecular weight of BFG was found to be 4.9 × 105 g/mol and the molecular structure analysis by FTIR and NMR spectroscopy revealed the presence of α-linked, d-galactopyranose units and ß-linked, D-mannopyranose units. Further characterization by rheometer confirmed the non-Newtonian and pseudo-plastic behavior of different BFG concentrations and structural analysis by XRD and SEM confirmed the amorphous nature of BFG with the presence of pores and cervices on the rough surface. Finally, the favorable biological activity demonstrated in response to fibroblast cells against different BFG concentrations substantiates its relevance to be used in biofabrication of tissue scaffolds.

3.
Sci Rep ; 13(1): 8695, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248251

ABSTRACT

Selenium deficiency is a prevalent micronutrient deficiency that poses a major health concern worldwide. This study aimed to shed light on the molecular mechanisms underlying selenium deficiency using a chick model. Chickens were divided into control and selenium deficient groups. Plasma samples were collected to measure selenium concentration and transcriptome analyse were performed on oviduct samples. The results showed that selenium deficiency led to a significant reduction in plasma selenium levels and altered the expression of 10,266 differentially expressed genes (DEGs). These DEGs primarily regulated signal transduction and cell motility. The molecular function includes GTPase regulatory activity, and KEGG pathway analysis showed that they were mainly involved in the signal transduction. By using Cytoscape and CancerGeneNet tool, we identified 8 modules and 10 hub genes (FRK, JUN, PTPRC, ACTA2, MST1R, SDC4, SDC1, CXCL12, MX1 and EZR) associated with receptor tyrosine kinase pathway, Wnt and mTOR signaling pathways that may be closely related to cancer. These hub genes could be served as precise diagnostic and prognostic candidate biomarkers of selenium deficiency and potential targets for treatment strategies in both animals and humans. This study sheds light on the molecular basis of selenium deficiency and its potential impact on public health.


Subject(s)
Chickens , Selenium , Animals , Humans , Chickens/genetics , Prognosis , Gene Regulatory Networks , Gene Expression Profiling/methods , Transcriptome , Computational Biology/methods , Protein Interaction Maps/genetics , Gene Expression Regulation, Neoplastic
4.
J Environ Manage ; 329: 117082, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36577302

ABSTRACT

-Enhancing the productivity of rainfed crops, especially rice, while coping with climate adversities and saving critical natural resources is essential for ensuring the food and nutrition security of a growing population. With this context, the present study was undertaken to validate promising farm innovation and adaptation practices used by small-medium landholding farmers for rice cultivation in eastern Uttar Pradesh (UP), north India, as well as to examine the sustainability of innovative practices for large-scale adoption. For this, a 3-year study comprising extensive field surveys and experiments was undertaken to compare single transplantation (ST) and double transplantation (DT) in rice along with organic addition (farm-yard manure, FYM) on crop growth, yield, climate resilience, soil quality, and overall sustainability i.e., social (women involvements and labour productivity), environmental (water productivity and nutrient use efficiency), and economic (benefit:cost ratio) dimensions of sustainability. Field experiments were conducted in triplicate using two local rice varieties (MotiNP-360 and Sampurna Kaveri) in two agroclimatic zones, namely the middle Gangetic plains and the Vindhyan zone, in the Mirzapur district of eastern Uttar Pradesh. The DT practices of rice with and without farm yard manure (FYM) (replacing at a dose of 25% NPK) were evaluated over conventional methods of rice cultivation (i.e., ST, as control) and analysis was done periodically. The DT practice improved growth (p < 0.05), percent fertile tiller and grain (p < 0.05), and rice yield (15-20% higher than ST), while also improving soil quality, yield indices, water and labour productivity, and the benefit-cost ratio. The DT practice also resulted in early maturity (10-15 days earlier than ST), created more labour days for women, decreased lodging and pest/disease incidence, as well as a subsequent reduction in the use of synthetic chemical pesticides and associated environmental costs. Importantly, the residual effects of FYM application significantly improved (p < 0.05) the grain yield in subsequent years of cropping. Optimizing DT cultivation practices, preferably with FYM input for various agro-climatic regions, is essential for large-scale sustainable rice production under changing climatic conditions.


Subject(s)
Agriculture , Oryza , Female , Humans , Agriculture/methods , Manure , Soil , Edible Grain , India
5.
Int J Biol Macromol ; 217: 522-535, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35841966

ABSTRACT

This study describes the fabrication of cellulose scaffold (CS) and cellulose-chitosan (CS/CHI) scaffolds from the immature endosperm of Borassus flabellifer (Linn.) (BF) loaded with platelet rich plasma (PRP). Thus, developed scaffolds were evaluated for their physicochemical and mechanical behavior, growth factor release and biological performance. Additionally, in vivo response was assessed in a sub cutaneous rat model to study vascularization, host inflammatory response and macrophage polarization. The results of this study demonstrated that CS and CS/CHI scaffolds with PRP demonstrated favorable physiochemical and morphogical properties. The scaffold groups CS-PRP and CS/CHI-PRP were able to release growth factors in a well sustained manner under physiological conditions. The presence of PRP in cellulosic scaffolds did show significant differences in their behavior when investigated under in vitro studies, where the release of diverse cytokines improved the cellular proliferation and differentiation of osteoblasts. Finally, the PRP enriched scaffolds when studied under in vivo conditions showed increased angiogenesis and re-epithelialization with adequate collagen deposition and tissue remodeling. Our results suggest that besides the conventional carrier systems, this new-generation of plant-based cellulosic scaffolds with/without any modification can serve as a suitable carrier for PRP encapsulation and release, which can be used in numerous tissue regenerative therapies.


Subject(s)
Chitosan , Platelet-Rich Plasma , Animals , Cellulose/metabolism , Cellulose/pharmacology , Chitosan/metabolism , Chitosan/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Platelet-Rich Plasma/metabolism , Rats , Tissue Engineering/methods , Tissue Scaffolds/chemistry
6.
ACS Biomater Sci Eng ; 8(5): 2000-2015, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35452211

ABSTRACT

The utility of plant tissues as scaffolding materials has been gaining significant interest in recent years owing to their unique material characteristics that are ideal for tissue regeneration. In this study, the degradation and biocompatibility of natural cellulosic scaffolds derived from Borassus flabellifer (Linn.) (BF) immature endosperm was improved by chemical oxidation and surface functionalization processes. Briefly, thus obtained cellulosic scaffolds were sequentially processed via a detergent exchange decellularization process followed by sodium periodate mediated oxidation and organosilane-based surface modification using amino (NH2)-terminated 3-aminopropyltriethoxysilane (APTES) and methyl (CH3)-terminated octadecyltrichlorosilane (OTS). Post oxidation and surface functionalization, the scaffolds showed improved physiochemical, morphological, and mechanical properties. Especially, the swelling capacity, total porosity, surface area, degradation kinetics, and mechanical behavior of scaffold were significantly higher in modified scaffold groups. The biocompatibility analysis demonstrated excellent cellular adhesion, proliferation and differentiation of osteoblasts with an evident upregulation of mineralization. Subcutaneous implantation of these scaffolds in a rat model demonstrated active angiogenesis, enhanced degradation, and excellent biocompatibility with concomitant deposition of a collagen matrix. Taken together, the native cellulosic scaffolds post chemical oxidation and surface functionalization can exclusively integrate the potential properties of native soft tissue with ameliorated in vitro and in vivo support in bone tissue engineering for nonloading bearing applications.


Subject(s)
Organosilicon Compounds , Tissue Scaffolds , Animals , Bone Regeneration , Cellulose/pharmacology , Rats , Tissue Engineering , Tissue Scaffolds/chemistry
7.
Int J Biol Macromol ; 195: 179-189, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34863969

ABSTRACT

The development of technologies that could ease the production of customizable patient-specific tissue engineering constructs having required biomechanical properties and restoring function in damaged tissue is the need of the hour. In this study, we report the optimization of composite, bioactive and biocompatible tripolymeric hydrogel bioink, suitable for both direct and indirect printing of customizable scaffolds for cartilage tissue engineering applications. A customized hierarchical meniscal scaffold was designed using solid works software and developed using a negative mould made of polylactic acid (PLA) filament and by a direct 3D printing process. A composite tripolymeric bioink made of gelatin, carboxymethyl cellulose (CMC) and alginate was optimized and characterized for its printability, structural, bio-mechanical and bio-functional properties. The optimized composite hydrogel bioink was extruded into the negative mould with and without live cells, cross-linked and the replica of meniscus structure was retrieved aseptically. The cellular proliferation, apatite formation, and extracellular matrix secretion from negative printed meniscal scaffold were determined using MTT, live/dead and collagen estimation assays. A significant increase in collagen secretion, cellular proliferation and changes in biomechanical properties was observed in the 3D scaffolds with MG63-osteosarcoma cells indicating its suitability for cartilage tissue engineering.


Subject(s)
Alginates/chemistry , Carboxymethylcellulose Sodium/chemistry , Gelatin/chemistry , Meniscus/cytology , Bioprinting/methods , Cartilage/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Meniscus/metabolism , Polyesters , Printing, Three-Dimensional , Software , Tissue Engineering , Tissue Scaffolds/chemistry
8.
Gels ; 9(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36661802

ABSTRACT

Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its derivatives can be used to prevent and treat soft tissue diseases. Furthermore, chitosan can be employed as a nanocarrier for therapeutic drug delivery. In this review, we will first discuss chitosan and chitosan-based hydrogel polymers. The structure, functionality, and physicochemical characteristics of chitosan-based hydrogels are addressed. Second, a variety of characterization approaches were used to analyze and validate the physicochemical characteristics of chitosan-based hydrogel materials. Finally, we discuss the antibacterial, antibiofilm, and antifungal uses of supramolecular chitosan-based hydrogels. This review study can be used as a base for future research into the production of various types of chitosan-based hydrogels in the antibacterial and antifungal fields.

9.
Carbohydr Polym ; 272: 118494, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34420749

ABSTRACT

In this study, Borassus flabellifer (Linn.) (BF) immature endosperm was decellularized to produce three dimensional (3D) cellulose scaffolds that can support mammalian 3D cell culture. To this regard, we first evaluated the chemical composition, nutritive profile and pharmacological activities of BF endosperm. The results demonstrated that the BF tissue represented a complex concoction of polysaccharides with intrinsic phyto-ingredients which provide excellent pharmacological properties. Furthermore cellulosic scaffolds (CS) obtained from BF was treated with chitosan to produce cellulose-chitosan (CS/CHI) hybrid scaffolds. The comparative investigation on both scaffolds exhibited adequate swelling with controlled porosity and pore-size distribution. The physiochemical characterization showed reduced biodegradation, improved thermal stability and enhanced compressive strength in CS/CHI group. Biological studies reported favorable adhesion and proliferation of fibroblasts with evident cellular penetration and colonization on the both scaffolds. Taken together, plant derived cellulosic scaffolds could be used as an alternative scaffolding material in regenerative medicine.


Subject(s)
Cellulose , Tissue Engineering , Bone Regeneration , Chitosan , Extracellular Matrix , Tissue Scaffolds
10.
Mater Sci Eng C Mater Biol Appl ; 126: 112149, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34082960

ABSTRACT

Hydroxyapatite (HAP) nanopowders with different manganese (Mn) and selenium (Se) contents with Mn/Ca and Se/P molar ratio of 1 mol%, 2.5 mol% and 5 mol% were synthesized by wet-co-chemical precipitation method. The results revealed that with either Mn or Se doping, ion-substituted apatite phase was achieved with good crystallographic features. The combined evidence obtained from spectrometric techniques revealed that nanocrystalline HAP was effectively doped with Mn and Se ions, where Se in form of SeO32- replaced PO43- and Mn2+ replaced Ca2+. Mn and Se doped HAP samples exhibited rod-like and needle-like morphology with strong tendency to form agglomerates. HAP enriched with Mn and Se represented a strong antibacterial effect and also showed prominent blood compatibility. From the biocompatibility testing, it was evident that Mn and Se doped HAP augmented the osteoblasts adhesion, migration and proliferation in a dose-dependent manner. To conclude from this study, it is clearly evident that the doping amount of both Mn and Se ions can determine the size and morphology of the final HAP product. Therefore, Mn and Se HAP nanopowders with molar ratio less than 5 mol% without any heat treatment can provide good crystallographic features to HAP with satisfying micro-structural, thermal and biological properties.


Subject(s)
Durapatite , Selenium , Bone Regeneration , Ions , Manganese
11.
Int J Biol Macromol ; 183: 564-588, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33933542

ABSTRACT

Biofabrication by three-dimensional (3D) printing has been an attractive technology in harnessing the possibility to print anatomical shaped native tissues with controlled architecture and resolution. 3D printing offers the possibility to reproduce complex microarchitecture of native tissues by printing live cells in a layer by layer deposition to provide a biomimetic structural environment for tissue formation and host tissue integration. Plant based biomaterials derived from green and sustainable sources have represented to emulate native physicochemical and biological cues in order to direct specific cellular response and formation of new tissues through biomolecular recognition patterns. This comprehensive review aims to analyze and identify the most commonly used plant based bioinks for 3D printing applications. An overview on the role of different plant based biomaterial of terrestrial origin (Starch, Nanocellulose and Pectin) and marine origin (Ulvan, Alginate, Fucoidan, Agarose and Carrageenan) used for 3D printing applications are discussed elaborately. Furthermore, this review will also emphasis in the functional aspects of different 3D printers, appropriate printing material, merits and demerits of numerous plant based bioinks in developing 3D printed tissue-like constructs. Additionally, the underlying potential benefits, limitations and future perspectives of plant based bioinks for tissue engineering (TE) applications are also discussed.


Subject(s)
Nanocomposites , Polysaccharides/chemistry , Printing, Three-Dimensional/trends , Regenerative Medicine/trends , Tissue Engineering/trends , Alginates/chemistry , Animals , Carrageenan/chemistry , Cellulose/chemistry , Diffusion of Innovation , Forecasting , Humans , Pectins/chemistry , Sepharose/chemistry
12.
Cytotherapy ; 22(7): 344-353, 2020 07.
Article in English | MEDLINE | ID: mdl-32327304

ABSTRACT

BACKGROUND AIMS: This study evaluated the release kinetics of numerous representative and less studied platelet-rich plasma (PRP) cytokines/chemokines with regard to the effects of various cellular compositions and incubation times. In addition, the biological effects of different PRPs on osteoarthritis synovial fibroblasts in vitro were tested. METHODS: Peripheral whole blood was collected from healthy donors, and pure platelet-rich plasma (P-PRP), leukocyte-rich platelet-rich plasma (L-PRP) and platelet-poor plasma (PPP) were prepared for the analysis of the following biomolecules: IL-1ß, IL-4, IL-6, IL-10, IL-17a, IL-22, MIP-1α/CCL-3, RANTES/CCL-5, MCP-3/CCL-7, Gro-α/CXCL-1, PF-4/CXCL-4, ENA-78/CXCL-5, NAP-2/CXCL-7, IL-8/CXCL-8, Fractalkine/CX3CL-1, s-CD40L P-PRP, L-PRP and PPP. Their effect on osteoarthritis synovial fibroblasts in vitro was tested by analyzing changes induced in both gene expression on a panel of representative molecules involved in physiopathology of joint environment and synthesis of IL-1ß, IL-8 and hyaluronic acid. RESULTS: This study demonstrated that among the 16 analyzed biomolecules, four were undetectable, whereas most of the detected biomolecules were more concentrated in L-PRP even when concentrations were normalized to platelet number. Despite the pro-inflammatory boost, the various PRP preparations did not alter synovial fibroblast gene expression of specific factors that play a pivotal role in joint tissue homeostasis and are able to induce anti-inflammatory (TIMP-1) biomolecules. DISCUSSION: This study provides a set of reference data on the concentration and release kinetics of some less explored biomolecules that could represent potential specific effectors in the modulation of inflammatory processes and in tissue repair after treatment with PRP.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fibroblasts/pathology , Inflammation Mediators/metabolism , Osteoarthritis, Knee/pathology , Platelet-Rich Plasma/chemistry , Synovial Membrane/pathology , Adult , Cytokines/metabolism , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Humans , Joints/pathology , Joints/physiopathology , Kinetics , Leukocytes/metabolism , Male , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/therapy , Tissue Inhibitor of Metalloproteinase-1/metabolism
13.
Environ Geochem Health ; 42(6): 1617-1642, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31974693

ABSTRACT

The steady increase in the world's population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.


Subject(s)
Agriculture/methods , Composting , Oligochaeta , Animals , Fertilizers , Soil
14.
3 Biotech ; 9(3): 109, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30863693

ABSTRACT

Trichoderma spp. is considered as a plant growth promoter and biocontrol fungal agents. They colonize on the surface of root in most of the agriculture crops. They secrete different secondary metabolites and enzymes which promote different physiological processes as well as protect plants from various environmental stresses. This is part of their vital functions. They are widely exploited as a biocontrol agent and plant growth promoter in agricultural fields. Colonization of Trichoderma with roots can enhance nutrient acquisition from surrounding soil to root and can substantially increase nitrogen use efficiency (NUE) in crops and linked with activation of plant signaling cascade. Among Trichoderma species, only some Trichoderma species were well characterized which help in the uptake of nitrogen-containing compound (especially nitrate form) and induced nitric oxide (NO) in plants. Both nitrate and NO are known as a signaling agent, involved in plant growth and development and disease resistance. Activation of these signaling molecules may crosstalk with other signaling molecule (Ca2+) and phytohormone (auxin, gibberellins, cytokinin and ethylene). This ability of Trichoderma is important to agriculture not only for increased plant growth but also to control plant diseases. Recently, Trichoderma strains have been shown to encompass the ability to regulate transcripts level of high-affinity nitrate transporters and probably it was positively regulated by NO. This review aims to focus the usage of Trichoderma strains on crops by their abilities to regulate transcript levels, probably through activation of plant N signaling transduction that improve plant health.

15.
Mater Sci Eng C Mater Biol Appl ; 96: 941-954, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30606606

ABSTRACT

Biomaterials are of significant importance in biomedical applications as these biological macromolecules have moderately replaced classical tissue grafting techniques owing to its beneficial properties. Despite of its favourable advantages, poor mechanical and degradative properties of biomaterials are of great concern. To this regard, crosslinkers have emerged as a smart and promising tool to augment the biological functionality of biopolymers. Different crosslinkers have been extensively used in past decades to develop bone substitutes, but the implications of toxic response and adverse reactions are truly precarious after implantation. Traditional crosslinker like glutaraldehyde has been widely used in numerous bio-implants but the potential toxicity is largely being debated with many disproving views. As alternative, green chemicals, enzymatic and non-enzymatic chemicals, bi-functional epoxies, zero-length crosslinkers and physical crosslinkers have been introduced to achieve the desired properties of a bone substitute. In this review, systematic literature search was performed on PubMed database to identify the most commonly used crosslinkers for developing promising bone like materials. The relevant articles were identified, analysed and reviewed in this paper giving due importance to different crosslinking methodologies and comparing their effectiveness and efficacy in regard to material composition, scaffold production, crosslinker dosage, toxicity and immunogenicity. This review summarizes the recent developments in crosslinking mechanism with an emphasis placed on their ability to link proteins through bonding reactions. Finally, this study also covers the convergent and divergent methodologies of crosslinking strategies also giving special importance in retrieving the current limitations and future opportunities of crosslinking modalities in bone tissue engineering.


Subject(s)
Bone Substitutes/chemistry , Bone Substitutes/therapeutic use , Bone and Bones/metabolism , Cross-Linking Reagents/chemistry , Tissue Engineering/methods , Animals , Humans
16.
Int J Biol Macromol ; 106: 739-748, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28827204

ABSTRACT

This study focuses on the development of novel bone-like scaffolds by bio-inspired, pH-driven, mineralization of type I collagen matrix with magnesium-doped hydroxyapatite nanophase (MgHA/Coll). To this aim, this study evaluates the altered modifications in the obtained composite due to different crosslinkers such as dehydrothermal treatment (DHT), 1,4-butanediol diglycidyl ether (BDDGE) and ribose in terms of morphological, physical-chemical and biological properties. The physical-chemical properties of the composites evaluated by XRD, FTIR, ICP and TGA demonstrated that the chemical mimesis of bone was effectively achieved using the in-lab biomineralization process. Furthermore, the presence of various crosslinkers greatly promoted beneficial enzymatic resistivity and swelling ability. The morphological results revealed highly porous and fibrous micro-architecture with total porosity above 85% with anisotropic pore size within the range of 50-200µm in all the analysed composites. The mechanical behaviour in response to compressive forces demonstrated enhanced compressive modulus in all crosslinked composites, suggesting that mechanical behaviour is largely dependent on the type of crosslinker used. The biomimetic compositional and morphological features of the composites elicited strong cell-material interaction. Therefore, the results showed that by activating specific crosslinking mechanisms, hybrid composites can be designed and tailored to develop tissue-specific biomimetic biomaterials for hard tissue engineering.


Subject(s)
Collagen/chemistry , Cross-Linking Reagents/chemistry , Durapatite/chemistry , Regenerative Medicine , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Biomimetics , Butylene Glycols/chemistry , Collagen/therapeutic use , Durapatite/therapeutic use , Porosity , Tissue Engineering/methods , Tissue Scaffolds/chemistry
17.
Int Orthop ; 41(11): 2417-2419, 2017 11.
Article in English | MEDLINE | ID: mdl-28868566

ABSTRACT

We take advantage of the comments of Dr. Vukicevic et al. to clarify that the study focus did not include other diseases and locations than long bones; in this light, the articles that Dr. Vukicevic mentioned could not be selected. We would like to recognize the key contribution of Urist and the nice tribute of the International Orthopaedics heritage section on the BMPs discovery. While we could not refer to the latter, published after our search, we put emphasis on the steps of important discoveries that made BMPs available for clinical use, a road that started in 1965, when Urist showed that new bone formation could be induced by demineralized bone matrix, later identified as BMPs, and purified in the next three decades. In the past years, BMPs have been studied in several pre-clinical models. As this was not the focus of this systematic clinical review, only some pre-clinical papers were cited, aiming at underlining important aspects, such as the relationship between dosage and bone formation and the delivery material, which could influence BMPs release and effect, key factors requiring further studies to optimize BMPs augmentation, as mentioned in the discussion. While our article does not present the methodological strength of a meta-analysis, and while it was not possible to summarize the entire extensive literature on BMPs, we hope that our review could be useful to summarize the available evidence in terms of both BMPs augmentation potential and complications for the treatment of long bones affected by fractures, non-union, and osteonecrosis.


Subject(s)
Bone Morphogenetic Proteins , Fractures, Bone , Bone and Bones , Humans , Osteogenesis , Wound Healing
18.
Biomed Res Int ; 2017: 8074178, 2017.
Article in English | MEDLINE | ID: mdl-28852649

ABSTRACT

Long bone defects represent a clinical challenge. Bone tissue engineering (BTE) has been developed to overcome problems associated with conventional methods. The aim of this study was to assess the BTE strategies available in preclinical and clinical settings and the current evidence supporting this approach. A systematic literature screening was performed on PubMed database, searching for both preclinical (only on large animals) and clinical studies. The following string was used: "(Scaffold OR Implant) AND (Long bone defect OR segmental bone defect OR large bone defect OR bone loss defect)." The search retrieved a total of 1573 articles: 51 preclinical and 4 clinical studies were included. The great amount of preclinical papers published over the past few years showed promising findings in terms of radiological and histological evidence. Unfortunately, this in vivo situation is not reflected by a corresponding clinical impact, with few published papers, highly heterogeneous and with small patient populations. Several aspects should be further investigated to translate positive preclinical findings into clinical protocols: the identification of the best biomaterial, with both biological and biomechanical suitable properties, and the selection of the best choice between cells, GFs, or their combination through standardized models to be validated by randomized trials.


Subject(s)
Biocompatible Materials , Bone and Bones , Tissue Engineering , Tissue Scaffolds , Bone Transplantation , Bone and Bones/injuries , Bone and Bones/surgery , Humans
19.
Biomed Pharmacother ; 93: 296-307, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28651231

ABSTRACT

Plants are the source of a variety of secondary metabolites, which are often used in the anticancer activity. Discovering new anticancer drug from herbal source is more important in both biological and pharmacological activities. Hence, the objective of this study is to identify the anticancer agent in Callistemon citrinus (Curtis) Skeels (CC) for the treatment of cancer. Very recently we have reported an increased antioxidant activity in the ethanolic and methanolic extracts (EE and ME) of CC but significantly reduced activity (rather increased cytotoxicity), in the n-hexane extract (HE). In this study, the cytotoxicity of all the three solvent extracts was tested against A431, MG-63 and HaCaT cell lines by MTT assay. Interestingly HE has showed increased anti-proliferative effect against the cancer cells but was resisted by non-malignant cells. HPLC and GC-MS analysis revealed the presence of 1,8-Cineole as a predominant compound in HE, the semi-purified bioactive extract. Henceforth, this would be called HE-C and be used for further analyses to understand its mode of action on induced apoptosis/necrosis. Alamar blue assay of HE-C showed cytotoxicity and change in morphological characteristics, which was confirmed by AO/EB staining using fluorescence microscopy, ultra-structural features of apoptosis using SEM and TEM. HE-C induced cell death was also detected by FACS using FITC-labelled Annexin-V and Propidium iodide. ROS generation was monitored using DCF-DA by flow cytometry. The overall results suggested that the selective extract (HE-C) containing 1,8-Cineole has shown potential anti-cancer activity in a dose-dependent manner, and cell death was induced through ROS-mediated apoptosis. Our findings provide an insight into the potential of 1,8-Cineole as a novel drug for killing cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cyclohexanols/pharmacology , Hexanes/chemistry , Monoterpenes/pharmacology , Myrtaceae/chemistry , Plant Extracts/pharmacology , Antioxidants/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Eucalyptol , Humans , Reactive Oxygen Species/metabolism
20.
Mater Sci Eng C Mater Biol Appl ; 77: 594-605, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28532070

ABSTRACT

This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering.


Subject(s)
Biomimetics , Cell Proliferation , Collagen , Durapatite , Porosity , Ribose , Tissue Engineering , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...