Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(3): e202301533, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38156969

ABSTRACT

This study presents a novel approach to synthesizing silver nanoparticles (Ag NPs) using a solution combustion synthesis (SCS) method with Catharanthus roseus (C. roseus) leaf extract. The NPs were thoroughly characterized through X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), Transmission electron microscopy (TEM), and Selected area electron diffraction (SAED), elucidating their crystal structure. Notably, the synthesized Ag NPs exhibited a significant dose-dependent decline in viability of the MDA-MB 231 breast cancer cell line, with an IC50 value of 13.3 µg/mL, underscoring their potential as potent anticancer agent. Beyond cytotoxicity, the study pioneers an investigation into the biocompatibility of Ag NPs by blood hemolsysis, providing critical insights into their safety and biomedical applicability. Furthermore, this research uncovers a distinctive facet of Ag NPs, revealing their inhibitory effects on the inflammatory enzyme secretory phospholipase A2 (sPLA2), a recognized biomarker for breast cancer. The demonstrated in vitro and in vivo inhibition of sPLA2 highlights the multifaceted potential of Ag NPs in not only targeting cancer cells but also modulating inflammatory responses associated with breast cancer, positioning the study at the forefront of advancements in nanomedicine and cancer therapeutics.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Phospholipases A2, Secretory , Humans , Female , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , X-Ray Diffraction , Breast Neoplasms/drug therapy , Inflammation , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Spectroscopy, Fourier Transform Infrared
2.
Mater Sci Eng C Mater Biol Appl ; 75: 1026-1033, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28415385

ABSTRACT

In this study, we report the synthesis, structural and morphological characteristics of zinc oxide (ZnO) nanoparticles using solution combustion synthesis method where lemon juice was used as the fuel. In vitro anti-tubercular activity of the synthesized ZnO nanoparticles and their biocompatibility studies, both in vitro and in vivo were carried out. The synthesized nanoparticles showed inhibition of Mycobacterium tuberculosis H37Ra strain at concentrations as low as 12.5µg/mL. In vitro cytotoxicity study performed with normal mammalian cells (L929, 3T3-L1) showed that ZnO nanoparticles are non-toxic with a Selectivity Index (SI) >10. Cytotoxicity performed on two human cancer cell lines DU-145 and Calu-6 indicated the anti-cancer activity of ZnO nanoparticles at varied concentrations. Results of blood hemolysis indicated the biocompatibility of ZnO nanoparticles. Furthermore, in vivo toxicity studies of ZnO nanoparticles conducted on Swiss albino mice (for 14days as per the OECD 423 guidelines) showed no evident toxicity.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Nanoparticles/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Animals , Antitubercular Agents/adverse effects , Female , Hemolysis/drug effects , Male , Mice , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Zinc Oxide/adverse effects
3.
Mater Sci Eng C Mater Biol Appl ; 62: 919-26, 2016 May.
Article in English | MEDLINE | ID: mdl-26952499

ABSTRACT

This research work presents the synthesis of ZnO nanopellets (ZNPs) by low temperature hydrothermal approach and evaluation of their antibacterial activity, cytotoxicity in vitro and in vivo. Structural and morphological studies conducted on the sample reveal hexagonal ZNPs in the size range of 250-500 nm. Surface area measurements showed high porosity of the sample compared to conventional ZnO nanoparticles. Antimicrobial studies revealed their bactericidal nature against both Gram-negative and Gram-positive bacteria. Furthermore, to better understand the parameters that affect the interactions between our ZNPs and mammalian cells, and thus their biocompatibility, we have examined the impact of cell culture conditions as well as of material properties on cytotoxicity by DPPH, blood hemolysis and MTT assay. The results showed good antioxidant capacity and biocompatibility of ZNPs at higher concentrations. MTT assay revealed the anticancer activity of ZNPs against prostate and breast cancer cell lines. Acute toxicity tests on Swiss albino mice showed no evident toxicity over a 14 days period.


Subject(s)
Antineoplastic Agents/chemistry , Metal Nanoparticles/chemistry , Zinc Oxide/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Erythrocytes/cytology , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Free Radical Scavengers/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hemolysis/drug effects , Humans , Male , Metal Nanoparticles/toxicity , Mice , Particle Size , Sheep , Spectroscopy, Fourier Transform Infrared , Surface Properties , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL
...