Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 8(8): 7986-94, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25084515

ABSTRACT

Top-down fabrication of electron-beam lithography (EBL)-defined metallic nanostructures is a successful route to obtain extremely high electromagnetic field enhancement via plasmonic effects in well-defined regions. To this aim, various geometries have been introduced such as disks, triangles, dimers, rings, self-similar lenses, and more. In particular, metallic dimers are highly efficient for surface-enhanced Raman spectroscopy (SERS), and their decoupling from the substrate in a three-dimensional design has proven to further improve their performance. However, the large fabrication time and cost has hindered EBL-defined structures from playing a role in practical applications. Here we present three-dimensional nanostar dimer devices that can be recycled via maskless metal etching and deposition processes, due to conservation of the nanostructure pattern in the 3D geometry of the underlying Si substrate. Furthermore, our 3D-nanostar-dimer-in-ring structures (3D-NSDiRs) incorporate several advantageous aspects for SERS by enhancing the performance of plasmonic dimers via an external ring cavity, by efficient decoupling from the substrate through an elevated 3D design, and by bimetallic AuAg layers that exploit the increased performance of Ag while maintaining the biocompatibility of Au. We demonstrate SERS detection on rhodamine and adenine at extremely low density up to the limit of few molecules and analyze the field enhancement of the 3D-NSDiRs with respect to the exciting wavelength and metal composition.

2.
Nanotechnology ; 25(23): 235303, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24850217

ABSTRACT

We report the fabrication of Au nanostar arrays by means of electron beam lithography, in which the plasmon resonance energy can be tuned via the nanostar size from the visible into the near-infrared region. The spectral response of the nanostar arrays was investigated by optical extinction (transmittance) experiments, and their surface enhanced Raman scattering performance has been tested at two different excitation wavelengths, 633 nm and 830 nm, using chemisorbed Cresyl violet molecules as analyte. The experimental results are supported by numerical simulations of the spatial and spectral electric field enhancement.

3.
Adv Mater ; 26(15): 2353-8, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24452910

ABSTRACT

Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering.

4.
Sci Rep ; 3: 1792, 2013.
Article in English | MEDLINE | ID: mdl-23652645

ABSTRACT

Periodic and reproducible gold nanocuboids with various matrix dimensions and with different inter-particle gaps were fabricated by means of top-down technique. Rhodamine 6G was used as a probe molecule to optimize the design and the fabrication of the cuboid nanostructures. The electric field distribution for the nanocuboids with varying matrix dimensions/inter-particle gap was also investigated. These SERS devices were employed as biosensors through the investigation of both myoglobin and wild/mutated peptides. The results demonstrate the probing and the screening of wild/mutated BRCA1 peptides, thus opening a path for the fabrication of simple and cheap SERS device capable of early detection of several diseases.


Subject(s)
Biosensing Techniques/methods , Nanostructures/chemistry , Peptides/chemistry , Surface Plasmon Resonance/methods , BRCA1 Protein/chemistry , BRCA1 Protein/genetics , Gold/chemistry , Mutation , Myoglobin/chemistry , Myoglobin/genetics , Rhodamines/chemistry
5.
Analyst ; 137(8): 1785-92, 2012 Apr 21.
Article in English | MEDLINE | ID: mdl-22354094

ABSTRACT

We propose a large-area SERS device with efficient fluorescence quenching capability. The substrate is based on anodic porous alumina templates with various pore size and wall thickness as small as 15 and 36 nm, respectively. The nano-patterned SERS substrate, with excellent control and reproducibility of plasmon-polaritons generation, shows very efficient enhanced Raman signal in the presence of intrinsically fluorescent molecules such as cresyl violet, rhodamine, and green fluorescent protein. This work demonstrates that, when the nanostructures are properly designed and fabricated, Raman and fluorescence spectroscopy can be used in combination in order to obtain complementary molecular informations. Theoretical simulation shows excellent agreement with the experimental findings. The enhancement factor is found to be 10(3)-10(4), with respect to flat gold surface when the molecules are supposed to be closely packed, with considerable fluorescence suppression, showing a promising disposable biosensor.


Subject(s)
Biosensing Techniques , Benzoxazines , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Oxazines/chemistry , Reproducibility of Results , Rhodamines/chemistry , Spectrometry, Fluorescence , Spectrum Analysis, Raman
6.
Article in English | MEDLINE | ID: mdl-24427876

ABSTRACT

Microwave sintering of materials significantly depends on dielectric, magnetic and conductive Losses. Samples with high dielectric and magnetic loss such as ferrites could be sintered easily. But low dielectric loss material such as dielectric resonators (paraelectrics) finds difficulty in generation of heat during microwave interaction. Microwave sintering of materials of these two classes helps in understanding the variation in dielectric and magnetic characteristics with respect to the change in grain size. High-energy ball milled Ni0.6Cu0.2Zn0.2Fe1.98O4-delta and ZnTiO3 are sintered in conventional and microwave methods and characterized for respective dielectric and magnetic characteristics. The grain size variation with higher copper content is also observed with conventional and microwave sintering. The grain size in microwave sintered Ni0.6Cu0.2Zn0.2Fe1.98O4-delta is found to be much small and uniform in comparison with conventional sintered sample. However, the grain size of microwave sintered sample is almost equal to that of conventional sintered sample of Ni0.3Cu0.5Zn0.2Fe1.98O4-delta. In contrast to these high dielectric and magnetic loss ferrites, the paraelectric materials are observed to sinter in presence of microwaves. Although microwave sintered zinc titanate sample showed finer and uniform grains with respect to conventional samples, the dielectric characteristics of microwave sintered sample are found to be less than that of conventional sample. Low dielectric constant is attributed to the low density. Smaller grain size is found to be responsible for low quality factor and the presence of small percentage of TiO2 is observed to achieve the temperature stable resonant frequency.


Subject(s)
Ceramics/chemistry , Ceramics/radiation effects , Copper/chemistry , Heating/methods , Microwaves , Nickel/chemistry , Copper/radiation effects , Electric Impedance , Materials Testing , Nickel/radiation effects , Particle Size , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...