Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 94(6): 2870-2876, 2022 06.
Article in English | MEDLINE | ID: mdl-34841551

ABSTRACT

Rotaviruses by virtue of its segmented genome generate numerous genotypes. G1P[8] is the most common genotype reported globally. We intend to identify the evolutionary differences among G1P[8] strains from the study with vaccine strains. Stool samples collected from children <5 years were screened for rotavirus antigen by enzyme linked immunosorbent assay. The samples that tested positive for rotavirus were subjected to VP7 and VP4 semi-nested RT-PCR. Sanger sequencing was performed in randomly chosen VP7 and VP4 rotavirus strains. Phylogenetic analysis showed less homology between study strains and vaccine strains and they were placed in different lineages. The VP7 and VP4 proteins of rotavirus were analyzed by two different platforms to identify the amino acid substitutions in the epitope regions. Nine amino acid substitutions with respect to Rotarix®, RotaTeq® and Rotasiil®-V66A, A/T68S, Q72R, N94S, D100E, T113I, S123N, M217T, and I281T were observed in VP7. There were five amino acid substitutions-S145G, N/D195G, N113D, N/I78T, E150D in VP4 (VP8 portion) with respect to Rotarix® and RotaTeq® vaccine strains. M217T substitution in VP7 (epitope 7-2) and N113D, D195G substitution in VP4 (epitope 8-3, 8-1) confer changes in polarity/electrical charge with respect to vaccine strains, thus indicating the need for continued surveillance.


Subject(s)
Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Antigens, Viral/genetics , Capsid Proteins/genetics , Child , Epitopes/genetics , Genotype , Humans , India/epidemiology , Phylogeny
2.
J Clin Virol ; 144: 104989, 2021 11.
Article in English | MEDLINE | ID: mdl-34607240

ABSTRACT

BACKGROUND: Neonatal rotavirus infections are predominantly caused by distinct genotypes restricted to this age-group and are mostly asymptomatic. METHOD: Stool samples from neonates admitted for >48 h in neonatal intensive care units (NICUs) in Vellore (2014-2015) and Chennai (2015-2016) in southern India, and from neonates born at hospitals in Vellore but not admitted to NICUs (2015-2016) were tested for rotavirus by ELISA and genotyped by hemi-nested RT-PCR. RESULTS: Of 791 neonates, 150 and 336 were recruited from Vellore and Chennai NICUs, and 305 were born in five hospitals in Vellore. Positivity rates in the three settings were 49.3% (74/150), 29.5% (99/336) and 54% (164/305), respectively. G10P[11] was the commonly identified genotype in 87.8% (65/74), 94.9% (94/99) and 98.2% (161/164) of the neonates in Vellore and Chennai NICUs, and those born at Vellore hospitals, respectively. Neonates delivered by lower segment cesarian section (LSCS) at Vellore hospitals, not admitted to NICUs, had a significantly higher odds of acquiring rotavirus infection compared to those delivered vaginally [p = 0.002, OR = 2.4 (1.4-4.3)]. CONCLUSIONS: This report demonstrates the persistence of G10P[11] strain in Vellore and Chennai, indicating widespread neonatal G10P[11] strain in southern India and their persistence over two decades, leading to interesting questions about strain stability.


Subject(s)
Rotavirus Infections , Rotavirus , Genotype , Humans , India/epidemiology , Infant, Newborn , Polymerase Chain Reaction , Rotavirus/genetics , Rotavirus Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...