Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(10): 9347-9360, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37163519

ABSTRACT

The performance of electrochemical devices using ionic liquids (ILs) as electrolytes can be impaired by water uptake. This work investigates the influence of water on the behavior of hydrophilic and hydrophobic ILs─with ethylsulfate and tris(perfluoroalkyl)trifluorophosphate or bis(trifluoromethyl sulfonyl)imide (TFSI) anions, respectively─on electrified graphene, a promising electrode material. The results show that water uptake slightly reduces the IL electrochemical stability and significantly influences graphene's potential of zero charge, which is justified by the extent of anion depletion from the surface. Experiments confirm the dominant contribution of graphene's quantum capacitance (CQ) to the total interfacial capacitance (Cint) near the PZC, as expected from theory. Combining theory and experiments reveals that the hydrophilic IL efficiently screens surface charge and exhibits the largest double layer capacitance (CIL ∼ 80 µF cm-2), so that CQ governs the charge stored. The hydrophobic ILs are less efficient in charge screening and thus exhibit a smaller capacitance (CIL ∼ 6-9 µF cm-2), which governs Cint already at small potentials. An increase in the total interfacial capacitance is observed at positive voltages for humid TFSI-ILs relative to dry ones, consistent with the presence of a satellite peak. Short-range surface forces reveal the change of the interfacial layering with potential and water uptake owing to reorientation of counterions, counterion binding, co-ion repulsion, and water enrichment. These results are consistent with the charge being mainly stored in a ∼2 nm-thick double layer, which implies that ILs behave as highly concentrated electrolytes. This knowledge will advance the design of IL-graphene-based electrochemical devices.

2.
Clin Chim Acta ; 538: 139-156, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36403665

ABSTRACT

The SARS-CoV-2 pandemic has claimed around 6.4 million lives worldwide. The disease symptoms range from mild flu-like infection to life-threatening complications. The widespread infection demands rapid, simple, and accurate diagnosis. Currently used methods include molecular biology-based approaches that consist of conventional amplification by RT-PCR, isothermal amplification-based techniques such as RT-LAMP, and gene editing tools like CRISPR-Cas. Other methods include immunological detection including ELISA, lateral flow immunoassay, chemiluminescence, etc. Radiological-based approaches are also being used. Despite good analytical performance of these current methods, there is an unmet need for less costly and simpler tests that may be performed at point of care. Accordingly, nanomaterial-based testing has been extensively pursued. In this review, we discuss the currently used diagnostic techniques for SARS-CoV-2, their usefulness, and limitations. In addition, nanoparticle-based approaches have been highlighted as another potential means of detection. The review provides a deep insight into the current diagnostic methods and future trends to combat this deadly menace.


Subject(s)
COVID-19 , Nanoparticles , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Testing , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...