Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 86(7): 712-722, 2018 07.
Article in English | MEDLINE | ID: mdl-29633350

ABSTRACT

Proteomes of pathogenic Leptospira interrogans and L. borgpetersenii and the saprophytic L. biflexa were filtered through computational tools to identify Outer Membrane Proteins (OMPs) that satisfy the required biophysical parameters for their presence on the outer membrane. A total of 133, 130, and 144 OMPs were identified in L. interrogans, L. borgpetersenii, and L. biflexa, respectively, which forms approximately 4% of proteomes. A holistic analysis of transporting and pathogenic characteristics of OMPs together with Clusters of Orthologous Groups (COGs) among the OMPs and their distribution across 3 species was made and put forward a set of 21 candidate OMPs specific to pathogenic leptospires. It is also found that proteins homologous to the candidate OMPs were also present in other pathogenic species of leptospires. Six OMPs from L. interrogans and 2 from L. borgpetersenii observed to have similar COGs while those were not found in any intermediate or saprophytic forms. These OMPs appears to have role in infection and pathogenesis and useful for anti-leptospiral strategies.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Leptospira/chemistry , Proteome , Bacterial Outer Membrane Proteins/metabolism , Biological Transport , Databases, Protein , Leptospira/metabolism , Lipoproteins/metabolism
2.
Biochem J ; 383(Pt. 3): 507-15, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15255780

ABSTRACT

Before delivery to endosomes, portions of proCD (procathepsin D) and proSAP (prosaposin) are assembled into complexes. We demonstrate that such complexes are also present in secretions of cultured cells. To study the formation and properties of the complexes, we purified proCD and proSAP from culture media of Spodoptera frugiperda cells that were infected with baculoviruses bearing the respective cDNAs. The biological activity of proCD was demonstrated by its pH-dependent autoactivation to pseudocathepsin D and that of proSAP was demonstrated by feeding to saposin-deficient cultured cells that corrected the storage of radioactive glycolipids. In gel filtration, proSAP behaved as an oligomer and proCD as a monomer. ProSAP altered the elution of proCD such that the latter was shifted into proSAP-containing fractions. ProSAP did not change the elution of mature cathepsin D. Using surface plasmon resonance and an immobilized biotinylated proCD, binding of proSAP was demonstrated under neutral and weakly acidic conditions. At pH 6.8, specific binding appeared to involve more than one binding site on a proSAP oligomer. The dissociation of the first site was characterized by a K(D1) of 5.8+/-2.9x10(-8) M(-1) (calculated for the monomer). ProSAP stimulated the autoactivation of proCD and also the activity of pseudocathepsin D. Concomitant with the activation, proSAP behaved as a substrate yielding tri- and disaposins and smaller fragments. Our results demonstrate that proSAP forms oligomers that are capable of binding proCD spontaneously and independent of the mammalian type N-glycosylation but not capable of binding mature cathepsin D. In addition to binding proSAP, proCD behaves as an autoactivable and processing enzyme and its binding partner as an activator and substrate.


Subject(s)
Cathepsin D/metabolism , Enzyme Precursors/metabolism , Recombinant Proteins/metabolism , Saposins/metabolism , Animals , Cathepsin D/genetics , Cathepsin D/physiology , Cell Line, Tumor , Culture Media, Conditioned , Dimerization , Enzyme Activation/physiology , Enzyme Precursors/genetics , Enzyme Precursors/physiology , Humans , Multienzyme Complexes/metabolism , Pseudogenes , Saposins/genetics , Saposins/physiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spodoptera/cytology , U937 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...