Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(3): e25410, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356547

ABSTRACT

All viruses, including SARS-CoV-2, the virus responsible for COVID-19, continue to evolve, which can lead to new variants. The objective of this study is to assess the agreement between real-world clinical data and an algorithm that utilizes laboratory markers and age to predict the progression of disease severity in COVID-19 patients during the pre-Omicron and Omicron variant periods. The study evaluated the performance of a deep learning (DL) algorithm in predicting disease severity scores for COVID-19 patients using data from the USA, Spain, and Turkey (Ankara City Hospital (ACH) data set). The algorithm was developed and validated using pre-Omicron era data and was tested on both pre-Omicron and Omicron-era data. The predictions were compared to the actual clinical outcomes using a multidisciplinary approach. The concordance index values for all datasets ranged from 0.71 to 0.81. In the ACH cohort, a negative predictive value (NPV) of 0.78 or higher was observed for severe patients in both the pre-Omicron and Omicron eras, which is consistent with the algorithm's performance in the development cohort.

3.
Clin Chem Lab Med ; 61(4): 535-543, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36327445

ABSTRACT

OBJECTIVES: The field of artificial intelligence (AI) has grown in the past 10 years. Despite the crucial role of laboratory diagnostics in clinical decision-making, we found that the majority of AI studies focus on surgery, radiology, and oncology, and there is little attention given to AI integration into laboratory medicine. METHODS: We dedicated a session at the 3rd annual European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) strategic conference in 2022 to the topic of AI in the laboratory of the future. The speakers collaborated on generating a concise summary of the content that is presented in this paper. RESULTS: The five key messages are (1) Laboratory specialists and technicians will continue to improve the analytical portfolio, diagnostic quality and laboratory turnaround times; (2) The modularized nature of laboratory processes is amenable to AI solutions; (3) Laboratory sub-specialization continues and from test selection to interpretation, tasks increase in complexity; (4) Expertise in AI implementation and partnerships with industry will emerge as a professional competency and require novel educational strategies for broad implementation; and (5) regulatory frameworks and guidances have to be adopted to new computational paradigms. CONCLUSIONS: In summary, the speakers opine that the ability to convert the value-proposition of AI in the laboratory will rely heavily on hands-on expertise and well designed quality improvement initiative from within laboratory for improved patient care.


Subject(s)
Artificial Intelligence , Radiology , Humans , Laboratories , Clinical Decision-Making
4.
Article in English | MEDLINE | ID: mdl-28060710

ABSTRACT

In this era of genome-wide association studies (GWAS), the quest for understanding the genetic architecture of complex diseases is rapidly increasing more than ever before. The development of high throughput genotyping and next generation sequencing technologies enables genetic epidemiological analysis of large scale data. These advances have led to the identification of a number of single nucleotide polymorphisms (SNPs) responsible for disease susceptibility. The interactions between SNPs associated with complex diseases are increasingly being explored in the current literature. These interaction studies are mathematically challenging and computationally complex. These challenges have been addressed by a number of data mining and machine learning approaches. This paper reviews the current methods and the related software packages to detect the SNP interactions that contribute to diseases. The issues that need to be considered when developing these models are addressed in this review. The paper also reviews the achievements in data simulation to evaluate the performance of these models. Further, it discusses the future of SNP interaction analysis.


Subject(s)
Data Mining/methods , Genomics/methods , Machine Learning , Epistasis, Genetic/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...