Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 10406, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710736

ABSTRACT

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Nanostructures , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catalysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanostructures/chemistry , Escherichia coli/drug effects , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Cell Line, Tumor , Photochemical Processes , Photolysis
2.
Hum Genome Var ; 11(1): 6, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272864

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a mitochondrial hereditary disease in which visual loss affects complex 1 activity of the electron transport chain of mitochondria. It first manifests as painless dulling or blurry in one or even both eyes, and as it develops, sharpness and color perception are lost. In addition to primary mitochondrial DNA (mtDNA) mutations, there are also other environmental and epigenetic factors involved in the pathogenesis of LHON. One of the most common locations for deadly pathogenic mutations in humans is the human complex I accessory NDUFS4 subunit gene. The iron-sulfur clusters of the electron input domain were distorted in the absence of NDUFS4, which reduced complex I function and elevated the production of reactive oxygen species. Therefore, here, we studied the epigenetic alterations of NDUFS4 by focusing on histone activation and repressive markers. We isolated peripheral blood mononuclear cells (PBMCs) from LHON patients and healthy individuals and examined epigenetic modifications in ND4 mutant cells and control cells. Chromatin immunoprecipitation-qRT PCR (ChIP-qRT PCR) assays were performed to investigate the modifications of histones. In comparison to their controls, both LHON patients and ND4 mutant cells exhibited a significant enrichment in activation and repressive markers. This finding indicates that these modifications might mitigate the impact of LHON mutations on complex 1 and aid in elucidating the mechanism underlying the progression of LHON disease.

3.
Cell Mol Neurobiol ; 43(8): 3983-3996, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37831228

ABSTRACT

Parkinson's disease (PD) is caused due to degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) which leads to the depletion of dopamine in the body. The lack of dopamine is mainly due to aggregation of misfolded α-synuclein which causes motor impairment in PD. Dopamine is also required for normal retinal function and the light-dark vision cycle. Misfolded α-synuclein present in inner retinal layers causes vision-associated problems in PD patients. Hence, individuals with PD also experience structural and functional changes in the retina. Mutation in LRRK2, PARK2, PARK7, PINK1, or SNCA genes and mitochondria dysfunction also play a role in the pathophysiology of PD. In this review, we discussed the different etiologies which lead to PD and future prospects of employing non-invasive techniques and retinal changes to diagnose the onset of PD earlier.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/genetics , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Dopamine , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism , Early Diagnosis , Retina/metabolism
4.
Acta Histochem ; 125(4): 152041, 2023 May.
Article in English | MEDLINE | ID: mdl-37167794

ABSTRACT

A stem cell is a particular group of cells that has the extraordinary potential to convert within the body into particular cell types. They are used to regenerate tissues and cells in the body that have been damaged or destroyed by the disease. Stem cells come in three different varieties: adult stem cells, embryonic stem cells and induced pluripotent stem cells (iPSCs). Embryonic stem cells have a high chance of immune rejection and also have ethical dilemmas and iPSCs have genetic instability. Adult stem cells are difficult to analyze and extract for research since they are frequently insufficient in native tissues. However, mesenchymal stem cells (MSC) one of the categories of adult stem cells are stromal cells with a variety of potentials that can differentiate into a wide range of cell types. MSCs can be transplanted into a variety of people without worrying about rejection because they have demonstrated the ability to prevent an adverse reaction from the immune system. These transplants have powerful anti-inflammatory and immunosuppressive effects and greatly enhance the body's inherent healing capacity. While MSCs do not offer treatment for illnesses, the idea behind them is to enable the body to recover sufficiently for a protracted reduction in symptoms. In many cases, this is sufficient to significantly enhance the patient's well-being. Inspite of several advantages some potential long-term concerns connected to MSC therapy are maldifferentiation, immunosuppression and cancerous tumor growth. In this review, we will compare the mesenchymal stem cells with other stem cells with respect to the source of origin, their properties and therapeutic applications, and discuss the MSC's disadvantages.


Subject(s)
Induced Pluripotent Stem Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Adult , Humans , Embryonic Stem Cells , Induced Pluripotent Stem Cells/metabolism , Signal Transduction , Mesenchymal Stem Cell Transplantation/methods
SELECTION OF CITATIONS
SEARCH DETAIL