Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 293(34): 13134-13150, 2018 08 24.
Article in English | MEDLINE | ID: mdl-29945970

ABSTRACT

The SNF1-related protein kinase 1 (SnRK1) is a heterotrimeric eukaryotic kinase that interacts with diverse proteins and regulates their activity in response to starvation and stress signals. Recently, the FCS-like zinc finger (FLZ) proteins were identified as a potential scaffold for SnRK1 in plants. However, the evolutionary and mechanistic aspect of this complex formation is currently unknown. Here, in silico analyses predicted that FLZ proteins possess conserved intrinsically disordered regions (IDRs) with a propensity for protein binding in the N and C termini across the plant lineage. We observed that the Arabidopsis FLZ proteins promiscuously interact with SnRK1 subunits, which formed different isoenzyme complexes. The FLZ domain was essential for mediating the interaction with SnRK1α subunits, whereas the IDRs in the N termini facilitated interactions with the ß and ßγ subunits of SnRK1. Furthermore, the IDRs in the N termini were important for mediating dimerization of different FLZ proteins. Of note, the interaction of FLZ with SnRK1 was confined to cytoplasmic foci, which colocalized with the endoplasmic reticulum. An evolutionary analysis revealed that in general, the IDR-rich regions are under more relaxed selection than the FLZ domain. In summary, the findings in our study reveal the structural details, origin, and evolution of a land plant-specific scaffold of SnRK1 formed by the coordinated actions of IDRs and structured regions in the FLZ proteins. We propose that the FLZ protein complex might be involved in providing flexibility, thus enhancing the binding repertoire of the SnRK1 hub in land plants.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Intrinsically Disordered Proteins/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Genome, Plant , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Phosphorylation , Phylogeny , Protein Binding , Protein Conformation , Protein Domains , Protein Serine-Threonine Kinases/genetics , Zinc Fingers
2.
PLoS One ; 10(8): e0134328, 2015.
Article in English | MEDLINE | ID: mdl-26252898

ABSTRACT

Plant evolution is characterized by frequent genome duplication events. Expansion of habitat resulted in the origin of many novel genes and genome duplication events which in turn resulted in the expansion of many regulatory gene families. The plant-specific FCS-Like Zinc finger (FLZ) gene family is characterized by the presence of a FCS-Like Zinc finger (FLZ) domain which mediates the protein-protein interaction. In this study, we identified that the expansion of FLZ gene family size in different species is correlated with ancestral and lineage-specific whole genome duplication events. The subsequent gene loss found to have a greater role in determining the size of this gene family in many species. However, genomic block duplications played the significant role in the expansion of FLZ gene family in some species. Comparison of Arabidopsis thaliana and Oryza sativa FLZ gene family revealed monocot and dicot specific evolutionary trends. The FLZ genes were found to be under high purifying selection. The spatiotemporal expression analyses of Arabidopsis thaliana FLZ gene family revealed that majority of the members are highly expressed in reproductive organs. FLZ genes were also found to be highly expressed during vegetative-to-reproductive phase transition which is correlated with the proposed role of this gene family in sugar signaling. The comparison of sequence, structural and expression features of duplicated genes identified lineage-specific redundancy and divergence. This extensive evolutionary analysis and expression analysis of Arabidopsis thaliana FLZ genes will pave the way for further functional analysis of FLZ genes.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Multigene Family , Plant Proteins/genetics , Zinc Fingers/genetics , Amino Acid Sequence , Arabidopsis/genetics , Base Sequence , Chromosomes, Plant/genetics , Conserved Sequence , Gene Duplication , Gene Expression Regulation, Developmental , Genes, Duplicate , Genetic Variation , Molecular Sequence Data , Oryza/genetics , Phylogeny , Plant Proteins/chemistry , Real-Time Polymerase Chain Reaction , Spatio-Temporal Analysis
3.
Article in English | MEDLINE | ID: mdl-25314523

ABSTRACT

The Rayleigh instability (also called the Plateau-Rayleigh instability) of a nanosized liquid propane thread is investigated using molecular dynamics (MD). The validity of classical predictions at small length scales is verified by comparing the temporal evolution of liquid thread simulated by MD against classical predictions. Previous works have shown that thermal fluctuations become dominant at small length scales. The role and influence of the stochastic nature of thermal fluctuations in determining the instability at small length scale is also investigated. Thermal fluctuations are seen to dominate and accelerate the breakup process only during the last stages of breakup. The simulations also reveal that the breakup profile of nanoscale threads undergo modification due to reorganization of molecules by the evaporation-condensation process.


Subject(s)
Nanostructures/chemistry , Propane/chemistry , Temperature , Algorithms , Molecular Dynamics Simulation , Phase Transition , Stochastic Processes , Surface Tension , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...