Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(45): 100873-100891, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37642912

ABSTRACT

In the recent past, forest fires have increased due to the changing climate pattern. It is necessary to analyse and quantify various gaseous emissions so as to mitigate their harmful effects on air pollution. Satellite remote sensing data provides an opportunity to study the greenhouse gases in the atmosphere. The multispectral sensor of the Tropospheric Monitoring Instrument (Sentinel-5) is capable of recording the reflectance of wavelengths vital for measuring the atmospheric concentrations of methane, formaldehyde, aerosol, carbon monoxide, etc., at a spatial resolution of 0.01°. The present study utilized the Google Earth Engine (GEE) platform to study the emissions caused by forest fires in four districts of Uttarakhand State of India, which witnessed unprecedented fires in April-May 2021. All the datasets were ingested in GEE, which has the capability to analyse large datasets without the need to download them. The pre-fire period chosen was September 2020; the fire period was February-May 2021, and the post-fire period was June 2021. The variables chosen were aerosol absorbing index (AAI), carbon monoxide (CO) and nitrogen dioxide (NO2). The climate parameter temperature (Moderate Resolution Imaging Spectroradiometer Land Surface Temperature) and precipitation (from Climate Hazards Group InfraRed Precipitation (CHIRPS) Pentad) were also studied for the period mentioned. The results indicate a different trend for emissions in each district. For AAI, maximum emissions were noted in district Nainital followed by Almora, Tehri Garhwal and Garhwal. For CO emissions, the most affected district was Almora followed by Nainital, Garhwal and Tehri Garhwal. For NO2 emissions, the most affected district was Garhwal, followed by Nainital, Tehri Garhwal and Almora. Delta Normalized Burn Ratio was computed from Sentinel data (difference of pre-fire and post-fire images) to assess the burnt area severity. The Delta Normalized Burn Ratio values observed that the district with the most burnt area is Garhwal, followed by Nainital, Almora and Tehri Garhwal. The elevated temperatures and scanty rainfall patterns regulated the intensity and duration of forest fire. Monitoring the gaseous emissions as a consequence of forest fire in the GEE platform is much easier and more convenient at a regional level. Such data is much needed for mitigation measures to be implemented in time.


Subject(s)
Carbon Monoxide , Wildfires , Carbon Monoxide/analysis , Nitrogen Dioxide/analysis , Search Engine , Gases/analysis , Aerosols
2.
Front Plant Sci ; 14: 1181293, 2023.
Article in English | MEDLINE | ID: mdl-38333040

ABSTRACT

Abiotic and biotic factors have considerable impact on the plasticity of plant functional traits, which influences forest structure and productivity; however, their inter-relationships have not been quantified for fragmented tropical dry forest (TDF) ecosystems. We asked the following questions: (1) what are the variations in the plasticity of functional traits due to soil moisture availability in TDF fragments? (2) what are the roles of soil nutrients and forest disturbances in influencing variations in the plasticity of functional traits in the TDF fragments? and (3) how do the variations in the plasticity of functional traits influence the structure and productivity of TDF fragments? Based on linear mixed-effects results, we observed significant variations among tree species for soil moisture content (SMC) under the canopy and selected functional traits across forest fragments. We categorized tree species across fragments by principal component analysis (PCA) and hierarchical clustering on principal components (HCPC) analyses into three functional types, viz., low wood density high deciduous (LWHD), high wood density medium deciduous (HWMD), and high wood density low deciduous (HWLD). Assemblage of functional traits suggested that the LWHD functional type exhibits a drought-avoiding strategy, whereas HWMD and HWLD adopt a drought-tolerant strategy. Our study showed that the variations in functional trait plasticity and the structural attributes of trees in the three functional types exhibit contrasting affinity with SMC, soil nutrients, and disturbances, although the LWHD functional type was comparatively more influenced by soil resources and disturbances compared to HWMD and HWLD along the declining SMC and edge distance gradients. Plasticity in functional traits for the LWHD functional type exhibited greater variations in traits associated with the conservation of water and resources, whereas for HWMD and HWLD, the traits exhibiting greater plasticity were linked with higher productivity and water transport. The cumulative influence of SMC, disturbances, and functional trait variations was also visible in the relative abundance of functional types in large and small sized fragments. Our analysis further revealed the critical differences in the responses of functional trait plasticity of the coexisting tree species in TDF, which suggests that important deciduous endemic species with drought-avoiding strategies might be prone to strategic exclusion under expected rises in anthropogenic disturbances, habitat fragmentation, and resource limitations.

SELECTION OF CITATIONS
SEARCH DETAIL
...