Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 55(57): 8223-8226, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31215918

ABSTRACT

The cellular distribution of three dirhodium(ii) complexes with a paddlewheel structure was investigated using synchrotron-based X-ray fluorescence microscopy and cell viability studies. Complexes with vacant axial sites displayed cytotoxic activity and nuclear accumulation whereas complexes in which the axial positions were blocked showed little to no toxicity nor uptake.

2.
Endocrinology ; 159(2): 907-930, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29186352

ABSTRACT

Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/physiology , Cell Proliferation/drug effects , DNA Damage/drug effects , HSP90 Heat-Shock Proteins/metabolism , Prolactin/pharmacology , Cell Survival/drug effects , Cells, Cultured , Clone Cells/drug effects , Clone Cells/physiology , DNA Damage/genetics , Female , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...