Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 3919, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35273193

ABSTRACT

Uniform magnetic behavior within arrays of magnetoelectric heterostructures is important for the development of reliable strain-mediated microdevices. Multiple mechanisms may contribute to observed nonuniform magnetization reversal including surface roughness, non-uniform strain, and fabrication induced imperfections. Here, Co/Ni microdisks of 7 µm diameter were produced on both [Pb(Mg1/3Nb2/3)O3]1-x-[PbTiO3]x with x = 0.3 nominal composition (PMN-30PT) (011) and Si substrates, and the out-of-plane magnetization reversal was characterized using magneto-optical Kerr effect (MOKE). Coercivity variation across the microdisks within the arrays was observed on both the PMN-30PT and Si specimens with zero electric field applied. Co/Ni microdisks on a PMN-30PT substrate displayed relatively larger coercivity than those on a Si substrate due to the surface roughness effect. Quasistatic electric fields of varying magnitude were applied to the PMN-30PT substrate to assess the dependence of the coercivity on electric field induced strain. Our results indicate that while coercivity decreases with the increase of electric field induced strain, interfacial and edge roughness combine to realize a prohibitively large coercivity to overcome within the Co/Ni microdisks as well as a broad distribution of coercive field across a patterned microdisk array.

2.
J Phys D Appl Phys ; 53(10)2019.
Article in English | MEDLINE | ID: mdl-33060867

ABSTRACT

We explored the effect of a CoFe wedge inserted as a dusting layer (0.2 nm-0.4 nm thick) at the CoFeB/MgO interface of a sputtered Ta(2 nm)/W(3 nm)/CoFeB(0.9 nm)/MgO(3 nm)/Ta(2 nm) film-a typical structure for spin-orbit torque devices. Films were annealed at temperatures varying between 300 °C and 400 °C in an argon environment. Ferromagnetic resonance studies and vibrating sample magnetometry measurements were carried out to estimate the effective anisotropy field, the Gilbert damping, the saturation magnetization and the dead layer thickness as a function of the CoFe thickness and across several annealing temperatures. While the as-deposited films present only easy-plane anisotropy, a transition along the wedge from in-plane to out-of-plane was observed across several annealing temperatures, with evidence of a spin-reorientation transition separating the two regions.

3.
Phys Rev Appl ; 11(3)2019 03.
Article in English | MEDLINE | ID: mdl-33244511

ABSTRACT

Magnetostrictive Co77Fe23 films are fully suspended to produce free-standing, clamped-clamped, microbeam resonators. A negative or positive shift in the resonant frequency is observed for magnetic fields applied parallel or perpendicular to the length of the beam, respectively, confirming the magnetoelastic nature of the shift. Notably, the resonance shifts linearly with higher-bias fields oriented perpendicular to the beam's length. Domain imaging elucidates the distinction in the reversal processes along the easy and hard axes. Together, these results suggest that through modification of the magnetic anisotropy, the frequency shift and angular dependence can be tuned, producing highly magnetic-field-sensitive resonators.

4.
Phys Rev Lett ; 120(11): 117703, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29601763

ABSTRACT

An ultimate goal of spintronics is to control magnetism via electrical means. One promising way is to utilize a current-induced spin-orbit torque (SOT) originating from the strong spin-orbit coupling in heavy metals and their interfaces to switch a single perpendicularly magnetized ferromagnetic layer at room temperature. However, experimental realization of SOT switching to date requires an additional in-plane magnetic field, or other more complex measures, thus severely limiting its prospects. Here we present a novel structure consisting of two heavy metals that delivers competing spin currents of opposite spin indices. Instead of just canceling the pure spin current and the associated SOTs as one expects and corroborated by the widely accepted SOTs, such devices manifest the ability to switch the perpendicular CoFeB magnetization solely with an in-plane current without any magnetic field. Magnetic domain imaging reveals selective asymmetrical domain wall motion under a current. Our discovery not only paves the way for the application of SOT in nonvolatile technologies, but also poses questions on the underlying mechanism of the commonly believed SOT-induced switching phenomenon.

5.
Article in English | MEDLINE | ID: mdl-33060887

ABSTRACT

We report on the static and dynamic magnetic properties of W/CoFeB/Ta/CoFeB/MgO stacks, where the CoFeB layer is split in two by a 0.3 nm-thick Ta "dusting" layer. A total CoFeB thickness between 1.2 and 2.4 nm is studied. Perpendicular magnetic anisotropy is obtained for thickness below 1.8 nm even at the as-deposited stacks, and it is enhanced after annealing. Saturation magnetization is 1520 (1440) kA/m before (after) annealing, increased compared to non-split CoFeB layers. Ferromagnetic resonance measurements show that high magnetic anisotropy energy may be achieved (effective anisotropy field 0.571 ± 0.003 T), combined to a moderate Gilbert damping (0.030 ± 0.001). We argue that the above characteristics make the split-CoFeB system advantageous for spintronics applications.

6.
AIP Adv ; 7(5)2017 Mar.
Article in English | MEDLINE | ID: mdl-28690916

ABSTRACT

We report the frequency dependence of the ferromagnetic resonance linewidth of the free layer in magnetic tunnel junctions with all perpendicular-to-the-plane magnetized layers. While the magnetic-field-swept linewidth nominally shows a linear growth with frequency in agreement with Gilbert damping, an additional frequency-dependent linewidth broadening occurs that shows a strong asymmetry between the absorption spectra for increasing- and decreasing external magnetic field. Inhomogeneous magnetic fields produced during reversal of the reference and pinned layer complex is demonstrated to be at the origin of the symmetry breaking and the linewidth enhancement. Consequentially, this linewidth enhancement provides indirect information on the magnetic coercivity of the reference and pinned layers. These results have important implications for the characterization of perpendicular magnetized magnetic random access memory bit cells.

7.
Phys Rev B ; 93(6)2016 Feb 01.
Article in English | MEDLINE | ID: mdl-27882359

ABSTRACT

We present measurements of the exchange stiffness D and the exchange constant A of a sputtered 80 nm Tb0.3Dy0.7Fe2 film. Using a broadband ferromagnetic resonance setup in a wide frequency range from 10 GHz to 50 GHz, multiple perpendicular standing spin-wave resonances were observed with the external static magnetic field applied in-plane. The field corresponding to the strongest resonance peak at each frequency is used to determine the effective magnetization, the g-factor and the Gilbert damping. Furthermore, the dependence of spin-wave mode on field-position is observed for several frequencies. The analysis of spin-wave resonance spectra at multiple frequencies allows precise determination of the exchange stiffness D = (2.79 ± 0.02) × 10-17 T · m2 for an 80 nm thick film. From this value, we calculated the exchange constant A = (9.1 ± 0.1) pJ · m-1.

8.
Appl Phys Lett ; 109(8)2016.
Article in English | MEDLINE | ID: mdl-27885299

ABSTRACT

We report the magnetization reversal behavior of microstructured Ni80Fe20 rings using magneto-optic indicator film imaging and magnetometry. While the reversal behavior of rings with a symmetric (circular) interior hole agrees with micromagnetic simulations of an onion → vortex → onion transition, we experimentally demonstrate that rings possessing an elliptical hole with an aspect ratio of 2 exhibit complex reversal behavior comprising incoherent domain propagation in the rings. Magneto optic images reveal metastable magnetic configurations that illustrate this incoherent behavior. These results have important implications for understanding the reversal behavior of asymmetric ferromagnetic rings.

9.
Sci Rep ; 6: 27774, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27297638

ABSTRACT

Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices.

10.
Rev Sci Instrum ; 84(6): 065101, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822372

ABSTRACT

We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT. It generates static magnetic fields as well as ramped fields, with ramping rates as high as 10 T/s. We demonstrate the use of this apparatus for studying the magnetotransport properties of spin-valve nanopillars, a nanoscale device that exhibits giant magnetoresistance.

11.
Rev Sci Instrum ; 83(5): 054701, 2012 May.
Article in English | MEDLINE | ID: mdl-22667635

ABSTRACT

We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...