Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Chemphyschem ; 25(8): e202300934, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38279668

ABSTRACT

Multinuclear Nuclear Magnetic Resonance (NMR) spectroscopy of quadrupolar nuclei at ultrahigh magnetic field provides compelling insight into the short-range structure in a family of fast oxide ion electrolytes with La1+xSr1-xGa3O7+0.5x melilite structure. The striking resolution enhancement in the solid-state 71Ga NMR spectra measured with the world's unique series connected hybrid magnet operating at 35.2 T distinctly resolves Ga sites in four- and five-fold coordination environments. Detection of five-coordinate Ga centers in the site-disordered La1.54Sr0.46Ga3O7.27 melilite is critical given that the GaO5 unit accommodates interstitial oxide ions and provides excellent transport properties. This work highlights the importance of ultrahigh magnetic fields for the detection of otherwise broad spectral features in systems containing quadrupolar nuclei and the potential of ensemble-based computational approaches for the interpretation of NMR data acquired for site-disordered materials.

2.
Chem Commun (Camb) ; 59(21): 3111-3113, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36804656

ABSTRACT

High sensitivity and resolution solid-state NMR methods are reported, that straightforwardly select hydrogen-bonded 15N-17O pairs from amongst all other nitrogen and oxygen sites in peptides, to aid protein secondary and tertiary structure determination. Significantly improved sensitivity is obtained with indirect 1H detection under fast MAS and stronger relayed dipole couplings.


Subject(s)
Peptides , Proteins , Hydrogen Bonding , Peptides/chemistry , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , Nitrogen
3.
J Am Chem Soc ; 144(41): 18766-18771, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36214757

ABSTRACT

Boron oxide/hydroxide supported on oxidized activated carbon (B/OAC) was shown to be an inexpensive catalyst for the oxidative dehydrogenation (ODH) of propane that offers activity and selectivity comparable to boron nitride. Here, we obtain an atomistic picture of the boron oxide/hydroxide layer in B/OAC by using 35.2 T 11B and 17O solid-state NMR experiments. NMR spectra measured at 35.2 T resolve the boron and oxygen sites due to narrowing of the central-transition powder patterns. A 35.2 T 2D 11B{17O} dipolar heteronuclear correlation NMR spectrum revealed the structural connectivity between boron and oxygen atoms. The approach outlined here should be generally applicable to determine atomistic structures of heterogeneous catalysts containing quadrupolar nuclei.


Subject(s)
Boron , Propane , Boron/chemistry , Propane/chemistry , Powders , Charcoal , Magnetic Resonance Spectroscopy/methods , Oxygen , Hydroxides , Oxidative Stress
4.
J Phys Chem Lett ; 13(28): 6549-6558, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35830592

ABSTRACT

Oxygen is an integral component of proteins but remains sparsely studied because its only NMR active isotope, 17O, has low sensitivity, low resolution, and large quadrupolar couplings. These issues are addressed here with efficient isotopic labeling, high magnetic fields, fast sample spinning, and 1H detection in conjunction with multidimensional experiments to observe oxygen sites specific to each amino acid residue. Notably, cross-polarization at high sample spinning frequencies provides efficient 13C ↔ 17O polarization transfer. The use of 17O for initial polarization is found to provide better sensitivity per unit time compared to 1H. Sharp isotropic 17O peaks are obtained by using a low-power multiple-quantum sequence, which in turn allows extraction of quadrupolar parameters for each oxygen site. Finally, the potential to determine sequential assignments and long-range distance restraints is demonstrated by using 3D 1H/13C/17O experiments, suggesting that such methods can become an essential tool for biomolecular structure determination.


Subject(s)
Peptides , Proteins , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Oxygen , Peptides/chemistry , Proteins/chemistry
5.
J Phys Chem Lett ; 12(32): 7768-7776, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34374542

ABSTRACT

During the maturation step, the retroviral capsid proteins (CAs) assemble into polymorphic capsids. Their acute curvature is largely determined by 12 pentamers inserted into the hexameric lattice. However, how the CA switches its conformation to control assembly curvature remains unclear. We report the high-resolution structural model of the Rous sarcoma virus (RSV) CA T = 1 capsid, established by molecular dynamics simulations combining solid-state NMR and prior cryoelectron tomography restraints. Comparing this with our previous model of the RSV CA tubular assembly, we identify the key residues for dictating the incorporation of acute curvatures. These residues undergo large torsion angle changes, resulting in a 34° rotation of the C-terminal domain relative to its N-terminal domain around the flexible interdomain linker, without substantial changes of either the conformation of individual domains or the assembly contact interfaces. This knowledge provides new insights to help decipher the mechanism of the retroviral capsid assembly.


Subject(s)
Capsid Proteins/chemistry , Capsid/chemistry , Rous sarcoma virus/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Pliability , Protein Conformation , Protein Domains
6.
Chemistry ; 26(35): 7881-7888, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32315472

ABSTRACT

Fast magic-angle spinning (MAS), frequency selective (FS) heteronuclear multiple quantum coherence (HMQC) experiments which function in an analogous manner to solution SOFAST HMQC NMR experiments, are demonstrated. Fast MAS enables efficient FS excitation of 1 H solid-state NMR signals. Selective excitation and observation preserves 1 H magnetization, leading to a significant shortening of the optimal inter-scan delay. Dipolar and scalar 1 H{14 N} FS HMQC solid-state NMR experiments routinely provide 4- to 9-fold reductions in experiment times as compared to conventional 1 H{14 N} HMQC solid-state NMR experiments. 1 H{14 N} FS resonance-echo saturation-pulse double-resonance (RESPDOR) allowed dipolar dephasing curves to be obtained in minutes, enabling the rapid determination of NH dipolar coupling constants and internuclear distances. 1 H{14 N} FS RESPDOR was used to assign multicomponent active pharmaceutical ingredients (APIs) as salts or cocrystals. FS HMQC also provided enhanced sensitivity for 1 H{17 O} and 1 H{35 Cl} HMQC experiments on 17 O-labeled Fmoc-alanine and histidine hydrochloride monohydrate, respectively. FS HMQC and FS RESPDOR experiments will provide access to valuable structural constraints from materials that are challenging to study due to unfavorable relaxation times or dilution of the nuclei of interest.


Subject(s)
Histidine/chemistry , Cell Nucleus/chemistry , Magnetic Resonance Spectroscopy , Protons
7.
Solid State Nucl Magn Reson ; 105: 101636, 2020 02.
Article in English | MEDLINE | ID: mdl-31816590

ABSTRACT

Fast magic angle spinning (MAS) and indirect detection by high gyromagnetic ratio (γ) nuclei such as proton or fluorine are increasingly utilized to obtain 2D heteronuclear correlation (HETCOR) solid-state NMR spectra of spin-1/2 nuclei by using cross polarization (CP) for coherence transfer. However, one major drawback of CP HETCOR pulse sequences is that 1H spin diffusion during the back X→1H CP transfer step may result in relayed correlations. This problem is particularly pronounced for the indirect detection of very low-γ nuclei such as 89Y, 103Rh, 109Ag and 183W where long contact times on the order of 10-30 ms are necessary for optimal CP transfer. Here we propose two methods that eliminate relayed correlations and allow more reliable distance information to be obtained from 2D HETCOR NMR spectra. The first method uses Lee-Goldburg (LG) CP during the X→1H back-transfer step to suppress 1H spin diffusion. We determine LG conditions compatible with fast MAS frequencies (νrot) of 40-95 kHz and show that 1H spin diffusion can be efficiently suppressed at low effective radiofrequency (RF) fields (ν1,eff ≪ 0.5νrot) and also at high effective RF fields (ν1,eff ≫ 2νrot). We describe modified Hartmann-Hahn LG-CP match conditions compatible with fast MAS and suitable for indirect detection of moderate-γ nuclei such as 13C, and low-γ nuclei such as 89Y. The second method uses D-RINEPT (dipolar refocused insensitive nuclei enhanced by polarization transfer) during the X→1H back-transfer step of the HETCOR pulse sequence. The effectiveness of these methods for acquiring HETCOR spectra with reduced relayed signal intensities is demonstrated with 1H{13C} HETCOR NMR experiments on l-histidine⋅HCl⋅H2O and 1H{89Y} HETCOR NMR experiments on an organometallic yttrium complex.

8.
J Am Chem Soc ; 139(49): 17953-17963, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29111706

ABSTRACT

The structure of two protected amino acids, FMOC-l-leucine and FMOC-l-valine, and a dipeptide, N-acetyl-l-valyl-l-leucine (N-Ac-VL), were studied via one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy. Utilizing 17O magic-angle spinning (MAS) NMR at multiple magnetic fields (17.6-35.2 T/750-1500 MHz for 1H) the 17O quadrupolar and chemical shift parameters were determined for the two oxygen sites of each FMOC-protected amino acids and the three distinct oxygen environments of the dipeptide. The one- and two-dimensional, 17O, 15N-17O, 13C-17O, and 1H-17O double-resonance correlation experiments performed on the uniformly 13C,15N and 70% 17O-labeled dipeptide prove the attainability of 17O as a probe for structure studies of biological systems. 15N-17O and 13C-17O distances were measured via one-dimensional REAPDOR and ZF-TEDOR experimental buildup curves and determined to be within 15% of previously reported distances, thus demonstrating the use of 17O NMR to quantitate interatomic distances in a fully labeled dipeptide. Through-space hydrogen bonding of N-Ac-VL was investigated by a two-dimensional 1H-detected 17O R3-R-INEPT experiment, furthering the importance of 17O for studies of structure in biomolecular solids.


Subject(s)
Dipeptides/chemistry , Leucine/analogs & derivatives , Magnetic Fields , Nuclear Magnetic Resonance, Biomolecular/methods , Oxygen Isotopes , Valine/analogs & derivatives , Valine/chemistry , Hydrogen Bonding , Leucine/chemistry
9.
J Magn Reson ; 284: 125-136, 2017 11.
Article in English | MEDLINE | ID: mdl-28890288

ABSTRACT

The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48mm magnet bore and 42mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1ppm homogeneity over a cylindrical volume of 1cm diameter and height. The magnetic field is regulated within 0.2ppm using an external 7Li lock sample doped with paramagnetic MnCl2. The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1H frequencies of 1.0, 1.2 and 1.5GHz. NMR at 1.5GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Magnets , Chlorides , Electromagnetic Fields , Equipment Design , Isotopes , Lithium , Manganese Compounds , Superconductivity
10.
J Am Chem Soc ; 139(5): 2006-2013, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28094514

ABSTRACT

The orthoretroviral capsid protein (CA) assembles into polymorphic capsids, whose architecture, assembly, and stability are still being investigated. The N-terminal and C-terminal domains of CA (NTD and CTD, respectively) engage in both homotypic and heterotypic interactions to create the capsid. Hexameric turrets formed by the NTD decorate the majority of the capsid surface. We report nearly complete solid-state NMR (ssNMR) resonance assignments of Rous sarcoma virus (RSV) CA, assembled into hexamer tubes that mimic the authentic capsid. The ssNMR assignments show that, upon assembly, large conformational changes occur in loops connecting helices, as well as the short 310 helix initiating the CTD. The interdomain linker becomes statically disordered. Combining constraints from ssNMR and cryo-electron microscopy (cryo-EM), we establish an atomic resolution model of the RSV CA tubular assembly using molecular dynamics flexible fitting (MDFF) simulations. On the basis of comparison of this MDFF model with an earlier-derived crystallographic model for the planar assembly, the induction of curvature into the RSV CA hexamer lattice arises predominantly from reconfiguration of the NTD-CTD and CTD trimer interfaces. The CTD dimer and CTD trimer interfaces are also intrinsically variable. Hence, deformation of the CA hexamer lattice results from the variable displacement of the CTDs that surround each hexameric turret. Pervasive H-bonding is found at all interdomain interfaces, which may contribute to their malleability. Finally, we find helices at the interfaces of HIV and RSV CA assemblies have very different contact angles, which may reflect differences in the capsid assembly pathway for these viruses.


Subject(s)
Capsid Proteins/chemistry , Rous sarcoma virus/chemistry , Crystallography, X-Ray , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Particle Size , Protein Conformation , Surface Properties
11.
J Am Chem Soc ; 138(42): 14066-14075, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27701859

ABSTRACT

HIV-1 CA capsid protein possesses intrinsic conformational flexibility, which is essential for its assembly into conical capsids and interactions with host factors. CA is dynamic in the assembled capsid, and residues in functionally important regions of the protein undergo motions spanning many decades of time scales. Chemical shift anisotropy (CSA) tensors, recorded in magic-angle-spinning NMR experiments, provide direct residue-specific probes of motions on nano- to microsecond time scales. We combined NMR, MD, and density-functional-theory calculations, to gain quantitative understanding of internal backbone dynamics in CA assemblies, and we found that the dynamically averaged 15N CSA tensors calculated by this joined protocol are in remarkable agreement with experiment. Thus, quantitative atomic-level understanding of the relationships between CSA tensors, local backbone structure, and motions in CA assemblies is achieved, demonstrating the power of integrating NMR experimental data and theory for characterizing atomic-resolution dynamics in biological systems.

12.
NMR Biomed ; 29(6): 759-66, 2016 06.
Article in English | MEDLINE | ID: mdl-27061712

ABSTRACT

At ultrahigh magnetic field strengths (B0 ≥ 7.0 T), potassium ((39) K) MRI might evolve into an interesting tool for biomedical research. However, (39) K MRI is still challenging because of the low NMR sensitivity and short relaxation times. In this work, we demonstrated the feasibility of (39) K MRI at 21.1 T, determined in vivo relaxation times of the rat head at 21.1 T, and compared (39) K and sodium ((23) Na) relaxation times of model solutions containing different agarose gel concentrations at 7.0 and 21.1 T. (39) K relaxation times were markedly shorter than those of (23) Na. Compared with the lower field strength, (39) K relaxation times were up to 1.9- (T1 ), 1.4- (T2S ) and 1.9-fold (T2L ) longer at 21.1 T. The increase in the (23) Na relaxation times was less pronounced (up to 1.2-fold). Mono-exponential fits of the (39) K longitudinal relaxation time at 21.1 T revealed T1 = 14.2 ± 0.1 ms for the healthy rat head. The (39) K transverse relaxation times were 1.8 ± 0.2 ms and 14.3 ± 0.3 ms for the short (T2S ) and long (T2L ) components, respectively. (23) Na relaxation times were markedly longer (T1 = 41.6 ± 0.4 ms; T2S = 4.9 ± 0.2 ms; T2L = 33.2 ± 0.2 ms). (39) K MRI of the healthy rat head could be performed with a nominal spatial resolution of 1 × 1 × 1 mm(3) within an acquisition time of 75 min. The increase in the relaxation times with magnetic field strength is beneficial for (23) Na and (39) K MRI at ultrahigh magnetic field strength. Our results demonstrate that (39) K MRI at 21.1 T enables acceptable image quality for preclinical research. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Magnetic Resonance Imaging/methods , Molecular Imaging/methods , Potassium/pharmacokinetics , Sodium Isotopes/pharmacokinetics , Animals , Feasibility Studies , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Inbred F344 , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
13.
Proc Natl Acad Sci U S A ; 112(47): 14617-22, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26553990

ABSTRACT

Host factor protein Cyclophilin A (CypA) regulates HIV-1 viral infectivity through direct interactions with the viral capsid, by an unknown mechanism. CypA can either promote or inhibit viral infection, depending on host cell type and HIV-1 capsid (CA) protein sequence. We have examined the role of conformational dynamics on the nanosecond to millisecond timescale in HIV-1 CA assemblies in the escape from CypA dependence, by magic-angle spinning (MAS) NMR and molecular dynamics (MD). Through the analysis of backbone (1)H-(15)N and (1)H-(13)C dipolar tensors and peak intensities from 3D MAS NMR spectra of wild-type and the A92E and G94D CypA escape mutants, we demonstrate that assembled CA is dynamic, particularly in loop regions. The CypA loop in assembled wild-type CA from two strains exhibits unprecedented mobility on the nanosecond to microsecond timescales, and the experimental NMR dipolar order parameters are in quantitative agreement with those calculated from MD trajectories. Remarkably, the CypA loop dynamics of wild-type CA HXB2 assembly is significantly attenuated upon CypA binding, and the dynamics profiles of the A92E and G94D CypA escape mutants closely resemble that of wild-type CA assembly in complex with CypA. These results suggest that CypA loop dynamics is a determining factor in HIV-1's escape from CypA dependence.


Subject(s)
Capsid/chemistry , Cyclophilin A/chemistry , HIV-1/chemistry , Allosteric Regulation , Capsid/ultrastructure , Cyclophilin A/ultrastructure , HIV-1/ultrastructure , Humans , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Mutant Proteins/chemistry , Mutation/genetics , Time Factors
14.
Biophys J ; 109(4): 737-49, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26287626

ABSTRACT

The oncogenic E5 protein from bovine papillomavirus is a short (44 amino acids long) integral membrane protein that forms homodimers. It activates platelet-derived growth factor receptor (PDGFR) ß in a ligand-independent manner by transmembrane helix-helix interactions. The nature of this recognition event remains elusive, as numerous mutations are tolerated in the E5 transmembrane segment, with the exception of one hydrogen-bonding residue. Here, we examined the conformation, stability, and alignment of the E5 protein in fluid lipid membranes of substantially varying bilayer thickness, in both the absence and presence of the PDGFR transmembrane segment. Quantitative synchrotron radiation circular dichroism analysis revealed a very long transmembrane helix for E5 of ∼26 amino acids. Oriented circular dichroism and solid-state (15)N-NMR showed that the alignment and stability of this unusually long segment depend critically on the membrane thickness. When reconstituted alone in exceptionally thick DNPC lipid bilayers, the E5 helix was found to be inserted almost upright. In moderately thick bilayers (DErPC and DEiPC), it started to tilt and became slightly deformed, and finally it became aggregated in conventional DOPC, POPC, and DMPC membranes due to hydrophobic mismatch. On the other hand, when E5 was co-reconstituted with the transmembrane segment of PDGFR, it was able to tolerate even the most pronounced mismatch and was stabilized by binding to the receptor, which has the same hydrophobic length. As E5 is known to activate PDGFR within the thin membranes of the Golgi compartment, we suggest that the intrinsic hydrophobic mismatch of these two interaction partners drives them together. They seem to recognize each other by forming a closely packed bundle of mutually aligned transmembrane helices, which is further stabilized by a specific pair of hydrogen-bonding residues.


Subject(s)
Receptors, Platelet-Derived Growth Factor/chemistry , Circular Dichroism , Escherichia coli , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Protein Conformation , Protein Stability
15.
Biophys J ; 108(7): 1683-1696, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25863060

ABSTRACT

Magic-angle spinning nuclear magnetic resonance is well suited for the study of membrane proteins in the nativelike lipid environment. However, the natural cellular membrane is invariably more complex than the proteoliposomes most often used for solid-state NMR (SSNMR) studies, and differences may affect the structure and dynamics of the proteins under examination. In this work we use SSNMR and other biochemical and biophysical methods to probe the structure of a seven-transmembrane helical photoreceptor, Anabaena sensory rhodopsin (ASR), prepared in the Escherichia coli inner membrane, and compare it to that in a bilayer formed by DMPC/DMPA lipids. We find that ASR is organized into trimers in both environments but forms two-dimensional crystal lattices of different symmetries. It favors hexagonal packing in liposomes, but may form a square lattice in the E. coli membrane. To examine possible changes in structure site-specifically, we perform two- and three-dimensional SSNMR experiments and analyze the differences in chemical shifts and peak intensities. Overall, this analysis reveals that the structure of ASR is largely conserved in the inner membrane of E. coli, with many of the important structural features of rhodopsins previously observed in ASR in proteoliposomes being preserved. Small, site-specific perturbations in protein structure that occur as a result of the membrane changes indicate that the protein can subtly adapt to its environment without large structural rearrangement.


Subject(s)
Cell Membrane/metabolism , Sensory Rhodopsins/chemistry , Amino Acid Sequence , Anabaena/chemistry , Escherichia coli/metabolism , Lipid Bilayers/chemistry , Molecular Sequence Data , Protein Structure, Tertiary , Sensory Rhodopsins/metabolism
16.
MAGMA ; 27(1): 63-70, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23748497

ABSTRACT

OBJECT: MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development. MATERIALS AND METHODS: MRI of (35)Cl and (23)Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method. RESULTS: T 1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T 1a = 4.8 ms (0.7) T 1b = 24.4 ± 7 ms (0.3) and compared with sodium (T 1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of [Formula: see text] ms and [Formula: see text] ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain. CONCLUSION: The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression.


Subject(s)
Brain Neoplasms/pathology , Chlorine/chemistry , Glioma/pathology , Magnetic Resonance Imaging/methods , Sodium/chemistry , Animals , Disease Progression , Equipment Design , Imaging, Three-Dimensional , Rats
17.
J Am Chem Soc ; 135(47): 17793-803, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24164646

ABSTRACT

A key stage in HIV-1 maturation toward an infectious virion requires sequential proteolytic cleavage of the Gag polyprotein leading to the formation of a conical capsid core that encloses the viral RNA genome and a small complement of proteins. The final step of this process involves severing the SP1 peptide from the CA-SP1 maturation intermediate, which triggers the condensation of the CA protein into the capsid shell. The details of the overall mechanism, including the conformation of the SP1 peptide in CA-SP1, are still under intense debate. In this report, we examine tubular assemblies of CA and the CA-SP1 maturation intermediate using magic angle spinning (MAS) NMR spectroscopy. At magnetic fields of 19.9 T and above, outstanding quality 2D and 3D MAS NMR spectra were obtained for tubular CA and CA-SP1 assemblies, permitting resonance assignments for subsequent detailed structural characterization. Dipolar- and scalar-based correlation experiments unequivocally indicate that SP1 peptide is in a random coil conformation and mobile in the assembled CA-SP1. Analysis of two CA protein sequence variants reveals that, unexpectedly, the conformations of the SP1 tail, the functionally important CypA loop, and the loop preceding helix 8 are modulated by residue variations at distal sites. These findings provide support for the role of SP1 as a trigger of the disassembly of the immature CA capsid for its subsequent de novo reassembly into mature cores and establish the importance of sequence-dependent conformational plasticity in CA assembly.


Subject(s)
Capsid Proteins/chemistry , Capsid Proteins/metabolism , HIV Infections/virology , HIV-1/chemistry , HIV-1/metabolism , Amino Acid Sequence , Capsid Proteins/ultrastructure , Gene Products, gag/chemistry , Gene Products, gag/metabolism , Gene Products, gag/ultrastructure , HIV-1/ultrastructure , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
19.
J Magn Reson ; 221: 110-6, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22750638

ABSTRACT

A tunable 900 MHz transmit/receive volume coil was constructed for ¹H MR imaging of biological samples in a 21.1 T vertical bore magnet. To accommodate a diverse range of specimen and RF loads at such a high frequency, a sliding-ring adaptation of a low-pass birdcage was implemented through simultaneous alteration of distributed capacitance. To make efficient use of the constrained space inside the vertical bore, a modular probe design was implemented with a bottom-adjustable tuning and matching apparatus. The sliding ring coil displays good homogeneity and sufficient tuning range for different samples of various dimensions representing large span of RF loads. High resolution in vivo and ex vivo images of large rats (up to 350 g), mice and human postmortem tissues were obtained to demonstrate coil functionality and to provide examples of potential applications at 21.1 T.


Subject(s)
Neuroimaging/instrumentation , Algorithms , Alzheimer Disease/pathology , Animals , Brain/pathology , Cadaver , Electromagnetic Fields , Equipment Design , Humans , Mice , Phantoms, Imaging , Rats , Rats, Sprague-Dawley
20.
J Am Chem Soc ; 134(22): 9022-5, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22616841

ABSTRACT

As a small tetrameric helical membrane protein, the M2 proton channel structure is highly sensitive to its environment. As a result, structural data from a lipid bilayer environment have proven to be essential for describing the conductance mechanism. While oriented sample solid-state NMR has provided a high-resolution backbone structure in lipid bilayers, quaternary packing of the helices and many of the side-chain conformations have been poorly restrained. Furthermore, the quaternary structural stability has remained a mystery. Here, the isotropic chemical shift data and interhelical cross peaks from magic angle spinning solid-state NMR of a liposomal preparation strongly support the quaternary structure of the transmembrane helical bundle as a dimer-of-dimers structure. The data also explain how the tetrameric stability is enhanced once two charges are absorbed by the His37 tetrad prior to activation of this proton channel. The combination of these two solid-state NMR techniques appears to be a powerful approach for characterizing helical membrane protein structure.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Viral Matrix Proteins/chemistry , Models, Molecular , Protein Conformation , Viral Matrix Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...