Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Acta Crystallogr C Struct Chem ; 80(Pt 7): 264-277, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38934273

ABSTRACT

3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered L-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X-H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for L-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering.

2.
Eur J Med Chem ; 271: 116397, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38626522

ABSTRACT

In this study, a new series of Isoxazole-carboxamide derivatives were synthesized and characterized via HRMS, 1H-, 13CAPT-NMR, and MicroED. The findings revealed that nearly all of the synthesized derivatives exhibited potent inhibitory activities against both COX enzymes, with IC50 values ranging from 4.1 nM to 3.87 µM. Specifically, MYM1 demonstrated the highest efficacy among the compounds tested against the COX-1, displaying an IC50 value of 4.1 nM. The results showed that 5 compounds possess high COX-2 isozyme inhibitory effects with IC50 value in range 0.24-1.30 µM with COX-2 selectivity indexes (2.51-6.13), among these compounds MYM4 has the lowest IC50 value against COX-2, with selectivity index around 4. Intriguingly, this compound displayed significant antiproliferative effects against CaCo-2, Hep3B, and HeLa cancer cell lines, with IC50 values of 10.22, 4.84, and 1.57 µM, respectively, which was nearly comparable to that of doxorubicin. Compound MYM4 showed low cytotoxic activities on normal cell lines LX-2 and Hek293t with IC50 values 20.01 and 216.97 µM respectively, with safer values than doxorubicin. Furthermore, compound MYM4 was able to induce the apoptosis, suppress the colonization of both HeLa and HepG2 cells. Additionally, the induction of Reactive oxygen species (ROS) production could be the mechanism underlying the apoptotic effect and the cytotoxic activity of the compound. In the 3D multicellular tumor spheroid model, results revealed that MYM4 compound hampered the spheroid formation capacity of Hep3B and HeLa cancer cells. Moreover, the molecular docking of MYM4 compound revealed a high affinity for the COX2 enzyme, with energy scores (S) -7.45 kcal/mol, which were comparable to celecoxib (S) -8.40 kcal/mol. Collectively, these findings position MYM4 as a promising pharmacological candidate as COX inhibitor and anticancer agent.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Cyclooxygenase Inhibitors , Drug Screening Assays, Antitumor , Isoxazoles , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemistry , Isoxazoles/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Spheroids, Cellular/drug effects , Models, Molecular , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cell Line, Tumor
3.
Nat Commun ; 14(1): 7932, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040707

ABSTRACT

Fungi are integral to well-functioning ecosystems, and their broader impact on Earth systems is widely acknowledged. Fossil evidence from the Rhynie Chert (Scotland, UK) shows that Fungi were already diverse in terrestrial ecosystems over 407-million-years-ago, yet evidence for the occurrence of Dikarya (the subkingdom of Fungi that includes the phyla Ascomycota and Basidiomycota) in this site is scant. Here we describe a particularly well-preserved asexual fungus from the Rhynie Chert which we examined using brightfield and confocal microscopy. We document Potteromyces asteroxylicola gen. et sp. nov. that we attribute to Ascomycota incertae sedis (Dikarya). The fungus forms a stroma-like structure with conidiophores arising in tufts outside the cuticle on aerial axes and leaf-like appendages of the lycopsid plant Asteroxylon mackiei. It causes a reaction in the plant that gives rise to dome-shaped surface projections. This suite of features in the fungus together with the plant reaction tissues provides evidence of it being a plant pathogenic fungus. The fungus evidently belongs to an extinct lineage of ascomycetes that could serve as a minimum node age calibration point for the Ascomycota as a whole, or even the Dikarya crown group, along with some other Ascomycota previously documented in the Rhynie Chert.


Subject(s)
Ascomycota , Ecosystem , Plants/microbiology , Fossils , Scotland
4.
Metabolites ; 13(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37887370

ABSTRACT

The grain of 30 winter wheat cultivars differing in terms of their resistance to FHB (Fusarium head blight) was tested. The cultivars were grown in four variants of field trials established in a split-plot design: control without fungicides, chemical control of FHB with fungicides after Fusarium inoculation, Fusarium head inoculation, and organic cultivation. The profile of volatile compounds in grain samples was determined by mean headspace-solid phase microextraction and analyzed by gas chromatography time-of-flight mass spectroscopy. The identified volatile profile comprised 146 compounds belonging to 14 chemical groups. The lowest abundance of volatile organic compounds (VOCs) was found for the organic cultivation variant. The performed discriminant analysis facilitated the complete separation of grain for individual experimental variants based on the number of VOCs decreasing from 116 through 62, 37 down to 14. The grain from organic farming was characterized by a significantly different VOCs profile than the grain from the other variants of the experiment. The compounds 1-methylcycloheptanol, 2-heptanone, 2(3H)-furanone, and 5-hexyldihydro-2(3H)-furanone showed statistically significant differences between all four experimental variants.

5.
Materials (Basel) ; 16(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37297100

ABSTRACT

Hardfacing is one of the techniques used for part lifecycle elongation. Despite being used for over 100 years, there still is much to discover, as modern metallurgy provides more and more sophisticated alloys, which then have to be studied to find the best technological parameters in order to fully utilize complex material properties. One of the most efficient and versatile hardfacing approaches is Gas Metal Arc Welding technology (GMAW) and its cored-wire equivalent, known as FCAW (Flux-Cored/Cored Arc Welding). In this paper, the authors study the influence of heat input on the geometrical properties and hardness of stringer weld beads fabricated from cored wire consisting of macrocrystalline tungsten carbides in a nickel matrix. The aim is to establish a set of parameters which allow to manufacture wear-resistant overlays with high deposition rates, preserving all possible benefits of this heterogenic material. This study shows, that for a given diameter of the Ni-WC wire, there exists an upper limit of heat input beyond which the tungsten carbide crystals may exhibit undesired segregation at the root.

6.
Materials (Basel) ; 16(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36676210

ABSTRACT

Steel forging tools are subjected to a number of tribological wear mechanisms depending on the geometry and surface of the tool and the flow of the material. Thus, there is no single general tribological wear mechanism, and only the predominant wear mechanisms in this case can be indicated. The problem has been known for years, but due to its complexity research on it is still relevant. In this study, the various wear mechanisms of hot work tools are analyzed on the basis of original research. Moreover, the influence of the micro- and macrostructure of the material and of its mechanical, physical, and technological characteristics on susceptibility to a given type of wear is considered. Adhesive wear, wear caused by plastic deformation, mechanical fatigue, thermal fatigue, the influence of hardness, heat treatment, and impact strength on tool wear and the mechanisms causing this wear are discussed in addition to tribological wear mechanisms such as abrasive wear. The influence of thermomechanical history and the characteristics of the tool material, including structural anisotropy, on the wear of these tools is indicated. The analysis of wear mechanisms performed will enable more precise definition of the principles of tool material selection and tool material condition for the hot forging of steel.

7.
Pathogens ; 11(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36558783

ABSTRACT

Fusarium head blight (FHB) is a wheat disease caused by fungi of the genus Fusarium. The aim of the study was to find relationships between the weather conditions in the experimental years and the locations and the amount of F. culmorum DNA and trichothecene genotypes, as well as the proportions between them. A three-year field experiment (2017, 2018 and 2019) was established in two locations (Poznan, Radzików). The DNA of F. culmorum was detected in all grain samples in an average amount of 20,124 pg per 1 µg of wheat DNA. The average amount of DNA from the 3ADON genotype was 4879 pg/µg and the amount of DNA from the NIV genotype was 3330 pg/µg. Weather conditions strongly affected the amount of DNA of F. culmorum and trichothecene genotypes detected in the grain. In the three experimental years, a high variability was observed in the coefficients of correlation between DNA concentrations and the FHB index, FDK, ergosterol and the corresponding toxins. There were significant correlations between disease incidence, fungal biomass (quantified as the total amount of fungal DNA or DNA trichothecene genotypes) and toxins (DON, 3AcDON and NIV) concentrations. The 3ADON trichothecene genotype dominated over the NIV genotype (ratio 1.5); however, this varied greatly depending on environmental conditions.

8.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36430711

ABSTRACT

Fusarium head blight (FHB) of wheat caused by Fusarium species is a destructive disease, causing grain yield and quality losses. Developing FHB-resistant cultivars is crucial to minimize the extent of the disease. The first objective of this study was incorporation of Fhb1 from a resistant donor into five Polish wheat breeding lines with good agronomical traits and different origins. We also performed a haplotype-based GWAS to identify chromosome regions in derived wheat families associated with Fusarium head blight resistance. As a result of marker-assisted backcrossing (MABC), five wheat combinations were obtained. Fungal inoculation and disease assessment were conducted for two years, 2019 and 2020. In 2019 the average phenotypic response of type II resistance was 2.2, whereas in 2020 it was 2.1. A haploblock-based GWAS performed on 10 phenotypic traits (related to type of resistance, year of experiment and FHB index) revealed nine marker-trait associations (MTA), among which six belong to chromosome 2D, two to 3B and one to 7D. Phenotypic variation (R2) explained by the identified haplotypes in haploblocks ranged from 6% to 49%. Additionally, an association weight matrix (AWM) was created, giving the partial correlation-information theory (PCIT) pipeline of 171 edges and 19 nodes. The resultant data and high level of explained phenotypic variance of MTA create the opportunity for data utilization in MAS.


Subject(s)
Fusarium , Humans , Fusarium/genetics , Genome-Wide Association Study , Haplotypes , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Triticum/genetics , Triticum/microbiology
9.
Materials (Basel) ; 15(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36079399

ABSTRACT

Wear of the working surfaces of machinery parts is a phenomenon that cannot be fully countered, only postponed. Among surface lifecycle elongation techniques, hardfacing is one which is most often used in heavy load applications. Hardfaced coating can be applied using different welding approaches or thermal spraying technologies, which differ when it comes to weld bead dimensional precision, layer thickness, process efficiency and material. In this study the authors examine the geometrical behavior and hardness properties of two distinctive chromium-based Gas Metal Arc Welding (GMAW) cored wires. The stringer beads are applied numerically with five levels of linear energy, being a resultant of typical values of welding speed and wire feed, ranging between 250 mm/s to 1250 mm/s (welding speed) and 2 m/min to 10 m/min (wire feed). The samples were cut, etched and measured using a digital microscope and Vickers indenter, additionally the chemical composition was also examined. Hardness was measured at five points in each cutout, giving 40 measurements per sample. The values were analyzed using an ANOVA test as a statistical background in order to emphasize the divergent behavior of the cored wires. It appeared that, despite having less chromium in its chemical composition, wire DO*351 exhibits higher hardness values; however, DO*332 tends to have a more stable geometry across all of the heat input levels.

10.
Molecules ; 27(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35268842

ABSTRACT

Problems related with biological contamination of plant origin raw materials have a considerable effect on prevention systems at each stage of food production. Concerning the antimicrobial action of phenolic acids, studies were undertaken to investigate antibacterial properties against bacterial strains of Escherichia coli (EC), Pseudomonas fluorescence (PF), Micrococcus luteus (ML) and Proteus mirabilis (PM), as well as antifungal properties targeting microscopic fungi Fusarium spp., extracts of phenolic compounds coming from inoculated grain from various genotypes of cereals. This study evaluated the antimicrobial action of phenolic acids extracts obtained from both naturally infested and inoculated with microorganisms. For this purpose a total of 24 cereal cultivars were selected, including 9 winter and 15 spring cultivars. The analyses showed a bactericidal effect in the case of 4 extracts against Micrococcus luteus (ML), 14 extracts against Pseudomonas fluorescence (PF), 17 extracts against Escherichia coli (EC) as well as 16 extracts against Proteus mirabilis (PM). It was found that 3 out of the 24 extracts showed no antibacterial activity. In turn, fungicidal action was observed in the case of 17 extracts against Fusarium culmorum (FC) (NIV), 16 extracts against FC (3AcDON), 12 extracts against Fusarium graminearum (FG) (3AcDON), while 12 other extracts showed antifungal action against FG (NIV) and 19 extracts against Fusarium langsethiae (FL). Based on the conducted analyses it was found that grain of small-grained cereals exposed to fungal infection is a source of bioactive compounds exhibiting antimicrobial properties. It was observed that the qualitative and quantitative profiles of polyphenols vary depending on the cereal cultivar. This extracts may be used to develop an antimicrobial preparation applicable in organic farming.


Subject(s)
Fusarium
11.
Mol Biol Cell ; 33(4): ar29, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35080992

ABSTRACT

Assembly of the dimeric complex III (CIII2) in the mitochondrial inner membrane is an intricate process in which several accessory proteins are involved as assembly factors. Despite numerous studies, this process has yet to be fully understood. Here we report the identification of human OCIAD2 (ovarian carcinoma immunoreactive antigen-like protein 2) as an assembly factor for CIII2. OCIAD2 was found to be deregulated in several carcinomas and also in some neurogenerative disorders; however, its nonpathological role had not been elucidated.  We have shown that OCIAD2 localizes to mitochondria and interacts with electron transport chain (ETC) proteins. Complete loss of OCIAD2 using gene editing in HEK293 cells resulted in abnormal mitochondrial morphology, a substantial decrease of both CIII2 and supercomplex III2+IV, and a reduction in CIII enzymatic activity. Identification of OCIAD2 as a protein required for assembly of functional CIII2 provides a new insight into the biogenesis and architecture of the ETC. Elucidating the mechanism of OCIAD2 action is important both for the understanding of cellular metabolism and for an understanding of its role in malignant transformation.


Subject(s)
Carcinoma , Ovarian Neoplasms , Carcinoma/metabolism , Electron Transport Complex III/metabolism , Female , HEK293 Cells , Humans , Mitochondria/metabolism , Neoplasm Proteins/metabolism , Ovarian Neoplasms/metabolism
12.
Toxins (Basel) ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34822522

ABSTRACT

Fusarium head blight (FHB) is one of the most serious diseases of small-grain cereals worldwide, resulting in yield reduction and an accumulation of the mycotoxin deoxynivalenol (DON) in grain. Weather conditions are known to have a significant effect on the ability of fusaria to infect cereals and produce toxins. In the past 10 years, severe outbreaks of FHB, and grain DON contamination exceeding the EU health safety limits, have occurred in countries in the Baltic Sea region. In this study, extensive data from field trials in Sweden, Poland and Lithuania were analysed to identify the most crucial weather variables for the ability of Fusarium to produce DON. Models were developed for the prediction of DON contamination levels in harvested grain exceeding 200 µg kg-1 for oats, spring barley and spring wheat in Sweden and winter wheat in Poland, and 1250 µg kg-1 for spring wheat in Lithuania. These models were able to predict high DON levels with an accuracy of 70-81%. Relative humidity (RH) and precipitation (PREC) were identified as the weather factors with the greatest influence on DON accumulation in grain, with high RH and PREC around flowering and later in grain development and ripening correlated with high DON levels. High temperatures during grain development and senescence reduced the risk of DON accumulation. The performance of the models, based only on weather variables, was relatively accurate. In future studies, it might be of interest to determine whether inclusion of variables such as pre-crop, agronomic factors and crop resistance to FHB could further improve the performance of the models.


Subject(s)
Avena/chemistry , Edible Grain/chemistry , Food Contamination/analysis , Hordeum/chemistry , Trichothecenes/analysis , Triticum/chemistry , Weather , Avena/microbiology , Baltic States , Edible Grain/microbiology , Hordeum/microbiology , Lithuania , Models, Theoretical , Poland , Seasons , Sweden , Trichothecenes/chemistry , Triticum/microbiology
13.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445103

ABSTRACT

Here, we report the development of a novel photoactive biomolecular nanoarchitecture based on the genetically engineered extremophilic photosystem I (PSI) biophotocatalyst interfaced with a single layer graphene via pyrene-nitrilotriacetic acid self-assembled monolayer (SAM). For the oriented and stable immobilization of the PSI biophotocatalyst, an His6-tag was genetically engineered at the N-terminus of the stromal PsaD subunit of PSI, allowing for the preferential binding of this photoactive complex with its reducing side towards the graphene monolayer. This approach yielded a novel robust and ordered nanoarchitecture designed to generate an efficient direct electron transfer pathway between graphene, the metal redox center in the organic SAM and the photo-oxidized PSI biocatalyst. The nanosystem yielded an overall current output of 16.5 µA·cm-2 for the nickel- and 17.3 µA·cm-2 for the cobalt-based nanoassemblies, and was stable for at least 1 h of continuous standard illumination. The novel green nanosystem described in this work carries the high potential for future applications due to its robustness, highly ordered and simple architecture characterized by the high biophotocatalyst loading as well as simplicity of manufacturing.


Subject(s)
Graphite/chemistry , Microalgae/chemistry , Nanostructures/chemistry , Photosystem I Protein Complex/chemistry , Light , Oxidation-Reduction/drug effects , Rhodophyta/chemistry , Signal Transduction/drug effects
14.
Elife ; 102021 07 20.
Article in English | MEDLINE | ID: mdl-34292154

ABSTRACT

Mitochondria are organelles with their own genomes, but they rely on the import of nuclear-encoded proteins that are translated by cytosolic ribosomes. Therefore, it is important to understand whether failures in the mitochondrial uptake of these nuclear-encoded proteins can cause proteotoxic stress and identify response mechanisms that may counteract it. Here, we report that upon impairments in mitochondrial protein import, high-risk precursor and immature forms of mitochondrial proteins form aberrant deposits in the cytosol. These deposits then cause further cytosolic accumulation and consequently aggregation of other mitochondrial proteins and disease-related proteins, including α-synuclein and amyloid ß. This aggregation triggers a cytosolic protein homeostasis imbalance that is accompanied by specific molecular chaperone responses at both the transcriptomic and protein levels. Altogether, our results provide evidence that mitochondrial dysfunction, specifically protein import defects, contributes to impairments in protein homeostasis, thus revealing a possible molecular mechanism by which mitochondria are involved in neurodegenerative diseases.


Subject(s)
Alzheimer Disease/metabolism , Cytosol/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Aggregates , Proteostasis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Alzheimer Disease/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Databases, Genetic , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
15.
Proc Natl Acad Sci U S A ; 117(16): 8966-8972, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32253305

ABSTRACT

Identifying marine or freshwater fossils that belong to the stem groups of the major terrestrial arthropod radiations is a longstanding challenge. Molecular dating and fossils of their pancrustacean sister group predict that myriapods originated in the Cambrian, much earlier than their oldest known fossils, but uncertainty about stem group Myriapoda confounds efforts to resolve the timing of the group's terrestrialization. Among a small set of candidates for membership in the stem group of Myriapoda, the Cambrian to Triassic euthycarcinoids have repeatedly been singled out. The only known Devonian euthycarcinoid, Heterocrania rhyniensis from the Rhynie and Windyfield cherts hot spring complex in Scotland, reveals details of head structures that constrain the evolutionary position of euthycarcinoids. The head capsule houses an anterior cuticular tentorium, a feature uniquely shared by myriapods and hexapods. Confocal microscopy recovers myriapod-like characters of the preoral chamber, such as a prominent hypopharynx supported by tentorial bars and superlinguae between the mandibles and hypopharynx, reinforcing an alliance between euthycarcinoids and myriapods recovered in recent phylogenetic analysis. The Cambrian occurrence of the earliest euthycarcinoids supplies the oldest compelling evidence for an aquatic stem group for either Myriapoda or Hexapoda, previously a lacuna in the body fossil record of these otherwise terrestrial lineages until the Silurian and Devonian, respectively. The trace fossil record of euthycarcinoids in the Cambrian and Ordovician reveals amphibious locomotion in tidal environments and fills a gap between molecular estimates for myriapod origins in the Cambrian and a post-Ordovician crown group fossil record.


Subject(s)
Arthropods/physiology , Evolution, Molecular , Fossils , Genetic Speciation , Animal Distribution , Animals , Fresh Water , Phylogeny , Seawater , Time Factors
16.
Microorganisms ; 7(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614527

ABSTRACT

Growing acreage and changing consumer preferences cause increasing interest in the cereal products originating from organic farming. Lack of results of objective test, however, does not allow drawing conclusions about the effects of cultivation in the organic system and comparison to currently preferred conventional system. Field experiment was conducted in organic and conventional fields. Thirty modern cultivars of winter wheat were sown. They were characterized for disease infection including Fusarium head blight, seed sowing value, the amount of DNA of the six species of Fusarium fungi as well as concentration of ergosterol and trichothecenes in grain. The intensity Fusarium head blight was at a similar level in both systems. However, Fusarium colonization of kernels expressed as ergosterol level or DNA concentration was higher for the organic system. It did not reflect in an increased accumulation of trichothecenes in grain, which was similar in both systems, but sowing value of organically produced seeds was lower. Significant differences between analyzed cropping systems and experimental variants were found. The selection of the individual cultivars for organic growing in terms of resistance to diseases and contamination of grain with Fusarium toxins was possible. Effects of organic growing differ significantly from the conventional and grain obtained such way can be recommended to consumers. There are indications for use of particular cultivars bred for conventional agriculture in the case of organic farming, and the growing organic decreases plant stress resulting from intense fertilization and chemical plant protection.

17.
Front Plant Sci ; 10: 1188, 2019.
Article in English | MEDLINE | ID: mdl-31632423

ABSTRACT

The coffee berry borer (Hypothenemus hampei) is the most damaging insect pest of global coffee production. Despite its importance, our knowledge on the insect's natural habitat, range, and wild host species remains poorly known. Using archival sources (mainly herbaria but also other museum collections), we surveyed 18,667 predominantly wild-collected herbarium specimens mostly from Africa, Madagascar, and Asia for coffee berry borer occurrence. A total of 72 incidences were confirmed for presence of the coffee berry borer, with identifications assisted by micro-CT for SEM. Of the 72 positive infestations, all were from tropical African coffee (Coffea) species, of which 32 were from wild (non-cultivated) plants. Of the 32 wild occurrences, 30 were found in C. canephora (robusta coffee), 1 in C. liberica (Liberica coffee), and 1 in C. arabica (Arabica coffee). Our herbarium survey confirms literature and anecdotal reports that the coffee berry borer is indigenous to tropical Africa, and that coffee species, and particularly robusta coffee, are important hosts. We identify the wetter type of Guineo-Congolian forest as either the preferred or exclusive native habitat of the coffee berry borer. Other than coffee, we find no evidence of other naturally occurring hosts. Characters of infestation (e.g., hole position on coffee fruits) infers a certain degree of specificity between the coffee berry borer and its host.

18.
Plant Pathol J ; 35(4): 313-320, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31481854

ABSTRACT

Rye was used here to dissect molecular mechanisms of resistance to Fusarium head blight (FHB) and to go deeper with our understanding of that process in cereals. F. culmorum-damaged kernels of two lines different in their potential of resistance to FHB were analyzed using two-dimensional gel electrophoresis and mass spectrometry to identify resistance markers. The proteome profiling was accompanied by measurements of α- and ß-amylase activities and mycotoxin content. The proteomic studies indicated a total of 18 spots with clear differences in protein abundance between the more resistant and more susceptible rye lines after infection. Eight proteins were involved in carbohydrate metabolism of which six proteins showed a significantly higher abundance in the resistant line. The other proteins recognized here were involved in stress response and redox homeostasis. Three remaining proteins were associated with protease inhibition/resistance and lignin biosynthesis, revealing higher accumulation levels in the susceptible rye line. After inoculation, the activities of α- and ß-amylases, higher in the susceptible line, were probably responsible for a higher level of starch decomposition after infection and a higher susceptibility to FHB. The presented results could be a good reference for further research to improve crop resistance to FHB.

19.
Zoological Lett ; 5: 11, 2019.
Article in English | MEDLINE | ID: mdl-30923631

ABSTRACT

ABSTRACT: The dentition in extant holocephalans (Chondrichthyes) comprises three pairs of continuously growing dental plates, rather than the separate teeth characterizing elasmobranchs. We investigated how different types of dentine in these plates, including hypermineralized dentine, are arranged, and how this is renewed aborally, in adult and juvenile dentitions of Harriotta raleighana (Rhinochimeridae). Individual plates were analysed using x-ray computed tomography (µCT), scanning electron microscopy (SEM) in back scattered mode with energy dispersive X-ray (EDX) analysis, and optical microscopy on hard tissue sections. RESULTS: Harriotta dental plates are made entirely of dentine tissue, mostly as trabecular dentine, bone itself being absent. Hypermineralized dentine forms in restricted ovoid and tritor spaces within trabecular dentine, inside a shell of outer and inner dentine layers. Trabecular dentine is ubiquitous but changes to sclerotic osteodentine near the oral surface by increasing density, remaining less mineralized than the hypermineralized dentine. All structures are renewed aborally, within a vascular dental pulp, a tissue suggested to be a source of stem cells for tissue renewal. Ca density profiles and concentrations of Mg, P, and Ca ions reveal extreme differences in the level and type of mineralization. Early mineralization in ovoids and tritors has very high levels of Mg, then a sudden increase in mineralization to a high total mineral content, whereas there is gradual change in trabecular dentine, remaining at a low level.Hypermineralized dentine fills the prepatterned ovoid, rod and tritor spaces, early at the aboral surface within the trabecular dentine. Deposition of the hypermineralized dentine (HD, proposed as new specific name, whitlockin replacing pleromin) is from surfaces that are lined with large specialized odontoblasts, (whitloblasts, instead of pleromoblasts) within cell body spaces connecting with extensive, ramifying tubules. Early mineralization occurs amongst this maze of tubules that penetrate far into the dentine, expanding into a mass of saccules and membranous bodies, dominating in the absence of other organic matrix. This early stage has hydroxyapatite, also significantly rich in Mg, initiated as a poorly crystalline phase. In the hypermineralized dentine, formation occurs as clusters of variably shaped crystals, arising from a sudden phase transition. CONCLUSIONS: In the hypermineralized dentine, high MgO + CaO + P2O5 suggests that almost pure Mg containing tricalciumphosphate (MgTCP: (ß-Ca3(PO4)2) (whitlockite) is present, with little or no hydroxyapatite. Serial replacement of tritors and ovoids is suggested to occur within the dental plate, probably representing a relic of patterning, as classically found in elasmobranch dentitions.

20.
Curr Biol ; 29(3): 461-467.e2, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30661795

ABSTRACT

The Lower Devonian Rhynie chert is justly famous for the clear glimpse it offers of early terrestrial ecosystems [1]. Seven species of stem- and crown-group vascular plants have been described from Rhynie, many preserved in growth position [2], as well as 14 species of invertebrate animals, all arthropods [3] save for a single nematode population [4]. While these shed welcome light on early tracheophytes and land animals, modern terrestrial ecosystems additionally contain a diversity of microscopic organisms that are key to ecosystem function, including fungi, protists, and bacteria. Fungi ranging from mycorrhizae to saprophytes are well preserved in Rhynie rocks ([5] and references therein), and oomycetes are also present [5]. Both green algae (charophytes) and cyanobacteria have also been documented locally [6, 7, 8]. To date, however, phagotrophic protists have not been observed in Rhynie cherts, even though such organisms contribute importantly to carbon, nitrogen, and silica cycling in modern terrestrial communities [9]. Here, we report a population of organic tests described as Palaeoleptochlamys hassii gen. nov., sp. nov. from a pond along the Rhynie alluvial plain, which we interpret as arcellinid amoebozoans. These fossils expand the ecological dimensions of the Rhynie biota and support the hypothesis that arcellinids transitioned from marine through freshwater environments to colonize soil ecosystems in synchrony with early vascular plants.


Subject(s)
Amoebozoa/classification , Fossils , Amoebozoa/cytology , Amoebozoa/physiology , Microscopy, Confocal , Paleontology , Scotland
SELECTION OF CITATIONS
SEARCH DETAIL
...