Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36448306

ABSTRACT

Lipid oxidation is a major cause of quality deterioration that decreases the shelf-life of muscle-based foods (red meat, poultry, and fish), in which heme proteins, particularly hemoglobin and myoglobin, are the primary pro-oxidants. Due to increasing consumer concerns over synthetic chemicals, extensive research has been carried out on natural antioxidants, especially plant polyphenols. The conventional opinion suggests that polyphenols inhibit lipid oxidation of muscle foods primarily owing to their strong hydrogen-donating and transition metal-chelating activities. Recent developments in analytical techniques (e.g., protein crystallography, nuclear magnetic resonance spectroscopy, fluorescence anisotropy, and molecular docking simulation) allow deeper understanding of the molecular interaction of polyphenols with heme proteins, phospholipid membrane, reactive oxygen species, and reactive carbonyl species; hence, novel hypotheses regarding their antioxidant mechanisms have been formulated. In this review, we summarize five direct and three indirect pathways by which polyphenols inhibit heme protein-mediated lipid oxidation in muscle foods. We also discuss the relation between chemical structures and functions of polyphenols as antioxidants.

2.
Crit Rev Food Sci Nutr ; 62(2): 325-352, 2022.
Article in English | MEDLINE | ID: mdl-32901517

ABSTRACT

Diabetes mellitus describes a group of metabolic disorders characterized by a prolonged period hyperglycemia with long-lasting detrimental effects on the cardiovascular and nervous systems, kidney, vision, and immunity. Many plant polyphenols are shown to have beneficial activity for the prevention and treatment of diabetes, by different mechanisms. This review article is focused on synthesizing the mechanisms by which polyphenols decrease insulin resistance and inhibit loss of pancreatic islet ß-cell mass and function. To achieve the objectives, this review summarizes the results of the researches realized in recent years in clinical trials and in various experimental models, on the effects of foods rich in polyphenols, polyphenolic extracts, and commercially polyphenols on insulin resistance and ß-cells death. Dietary polyphenols are able to reduce insulin resistance alleviating the IRS-1/PI3-k/Akt signaling pathway, and to reduce the loss of pancreatic islet ß-cell mass and function by several molecular mechanisms, such as protection of the surviving machinery of cells against the oxidative insult; increasing insulin secretion in pancreatic ß-cells through activation of the FFAR1; cytoprotective effect on ß-cells by activation of autophagy; protection of ß-cells to act as activators for anti-apoptotic pathways and inhibitors for apoptotic pathway; stimulating of insulin release, presumably by transient ATP-sensitive K+ channel inhibition and whole-cell Ca2+ stimulation; involvement in insulin release that act on ionic currents and membrane potential as inhibitor of delayed-rectifier K+ current (IK(DR)) and activator of current. dietary polyphenols could be used as potential anti-diabetic agents to prevent and alleviate diabetes and its complications, but further studies are needed.


Subject(s)
Insulin Resistance , Insulin-Secreting Cells , Humans , Hypoglycemic Agents/pharmacology , Insulin , Polyphenols/pharmacology
3.
Compr Rev Food Sci Food Saf ; 16(1): 96-123, 2017 Jan.
Article in English | MEDLINE | ID: mdl-33371549

ABSTRACT

Antioxidant system loss after slaughtering, reactive species production, cell disruption, contact with oxygen and light, heme and nonheme iron, and irradiation starts up mainly by 2 related oxidative processes: lipid peroxidation and protein oxidation. Products generated in these processes are responsible for meat quality loss, and some of them are suspected to be toxic to humans. This review article is focused on reactive species implicated in oxidative processes in meat, on lipid peroxidation mechanisms, heme protein, and nonheme protein oxidation, and on some toxic oxidation and digestion products. Nonenzymatic fatty acid peroxidation is exemplified by an arachidonic acyl group, and the initiation of chain reaction can be described by 3 pathways: singlet oxygen, hydroxyl radical from the Fenton reaction, and perferrylmyoglobin. Enzymatic oxidation of fatty acids is exemplified using linoleic acid, and the main characteristics of lipoxygenase are also presented. Heme protein oxidation is described in an interrelation with lipid peroxidation and the significance for food quality is shown. For protein oxidation, 3 different mechanism types are described: oxidation of amino acid residues, oxidation of protein backbone, and reactions of proteins with carbonyl compounds from lipid peroxidation. The effects of oxidative damage on protein properties and bioavailability are also shown. At the end of each oxidative process, the postprandial toxicity induced by oxidation products and the dietary degradation products are presented. Also discussed are reports by some researchers who suggest that dietary lipid and protein oxidation products and heme iron from red meat are in part cytotoxic and/or genotoxic.

4.
Compr Rev Food Sci Food Saf ; 16(6): 1243-1268, 2017 Nov.
Article in English | MEDLINE | ID: mdl-33371586

ABSTRACT

Oxidative processes and meat spoilage bacteria are major contributors to decreasing the shelf-life of meat and meat products. Oxidative processes occur during processing, storage, and light exposure, lowering the nutritional and sensory value and acceptability of meat and generating toxic compounds for humans. Polyphenols inhibit oxidative processes in 3 ways: as reactive species scavengers, lipoxygenase inhibitors, and reducing agents for metmyoglobin. Thus, polyphenols are candidate antioxidants for meat and meat products. The cross-contamination of meat with spoilage and pathogenic microorganisms can occur in production lines and result in economic losses. The ability of polyphenols to interact with bacterial cell wall components and the bacterial cell membrane can prevent and control biofilm formation, as well as inhibit microbial enzymes, interfere in protein regulation, and deprive bacterial cell enzymes of substrates and metal ions. Thus, polyphenols are candidate antimicrobial agents for use with meat and meat products. Commercially available polyphenols can decrease primary and secondary lipid peroxidation levels, inhibit lipoxygenase activity, improve meat color stability, minimize the degradation of salt-soluble myofibrillar protein and sulfhydryl groups, and retard bacterial growth. Further studies are now needed to clarify the synergistic/antagonistic action of various polyphenols, and to identify the best polyphenol classes, concentrations, and conditions of use.

SELECTION OF CITATIONS
SEARCH DETAIL
...