Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cytogenet Genome Res ; 134(1): 9-18, 2011.
Article in English | MEDLINE | ID: mdl-21304247

ABSTRACT

Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed.


Subject(s)
Genome , Sus scrofa/genetics , Animals , Chromosome Mapping , Genetic Linkage , Genetic Techniques , Humans , Quantitative Trait Loci
2.
J Anim Breed Genet ; 127(5): 348-51, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20831558

ABSTRACT

High levels of inbreeding in East African dairy cattle are a potential concern because of use of a limited range of imported germplasm coupled with strong selection, especially by disease, and sparse performance recording. To address this, genetic relationships and breed composition in an admixed population of Kenyan dairy cattle were estimated by means of a 50K SNP scan. Genomic DNA from 3 worldwide Holstein and 20 Kenyan bulls, 71 putative cow-calf pairs, 25 cows from a large ranch and 5 other Kenyan animals were genotyped for 37 238 informative SNPs. Sires were predicted and 89% of putative dam-calf relationships were supported by genotype data. Animals were clustered with the HapMap population using Structure software to assess breed composition. Cows from a large ranch primarily clustered with Holsteins, while animals from smaller farms were generally crosses between Holstein and Guernsey. Coefficients of relatedness were estimated and showed evidence of heavy use of one AI bull. We conclude that little native germplasm exists within the genotyped populations and mostly European ancestry remains.


Subject(s)
Breeding , Cattle/genetics , Pedigree , Polymorphism, Single Nucleotide , Animal Husbandry , Animals , Female , Genotype , Kenya , Male
3.
Anim Genet ; 40(1): 106-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18828861

ABSTRACT

Litopenaeus vannamei (Pacific white shrimp) have been farmed in the Americas for many years and are growing in popularity in Asia with the development of specific pathogen-free stocks. The full genomic sequence of this species might not be available in the near future, so other tools are needed to discover the location of polymorphic sites for quantitative trait loci mapping, association studies and subsequent marker-assisted selection. Currently, 25 937 L. vannamei expressed sequence tags (ESTs) are publicly available. These sequences were manually screened, masked for tandem repeats and inputted into CAP3 for clustering. The resulting 3532 contigs were analysed for possible single nucleotide polymorphisms (SNPs) with SNPIDENTIFIER, a newly developed computer program for predicting SNPs. SNPIDENTIFIER is designed for ESTs without accompanying chromatogram sequence quality information, and therefore it performs quality control checks on all data. SNPIDENTIFIER sets a threshold such that the sequences used have a poor quality nucleotide (N) frequency <0.1, and it trims off the first 10 bases of every sequence to ensure higher sequence quality. For a base to be predicted as an SNP, the minor nucleotide (allele) frequency must be >0.1, it must be observed at least four times and the 15 bases on either side must exactly match the consensus sequence. Using these conservative parameters, 504 SNPs were predicted from 141 contigs for L. vannamei. A small sample of 18 individuals from three lines have been sequenced to verify prediction results and 17 of 39 (44%) of the tested SNPs have been confirmed.


Subject(s)
Penaeidae/genetics , Polymorphism, Single Nucleotide , Software , Animals , Expressed Sequence Tags
SELECTION OF CITATIONS
SEARCH DETAIL
...