Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930282

ABSTRACT

Amines supported on porous solid materials have a high CO2 adsorption capacity and low regeneration temperature. However, the high amine load on such substrates and the substrate itself may lead to substantial pressure drop across the reactor. Herein, we compare the CO2 adsorption capacity and pressure drop of fumed silica powder to 3D-printed monolithic fumed silica structures, both functionalized by polyethylenimine (PEI), and find a drastically reduced pressure drop for 3D-printed substrates (0.01 bar vs. 0.76 bar) in the sorption bed with equal CO2 adsorption capacity. Furthermore, the effect of 3D-printing nozzle diameter and PEI loading on the adsorption capacity are investigated and the highest capacities (2.0 mmol/g at 25 °C with 5000 ppm CO2) are achieved with 0.4 mm nozzle size and 34 wt% PEI loading. These high capacities are achieved since the 3D printing and subsequent sintering (700 °C) of monolithic samples does not compromise the surface area of the fumed silica. Finally, the comparison between 3D-printed monoliths and extruded granulate of varying diameter reveals that the ordered channel system of 3D-printed structures is superior to randomly oriented granulate in terms of CO2 adsorption capacity.

2.
Phys Chem Chem Phys ; 16(22): 10503-11, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24736455

ABSTRACT

Efficient heat transfer of concentrated solar energy and rapid chemical kinetics are desired characteristics of solar thermochemical redox cycles for splitting CO2. We have fabricated reticulated porous ceramic (foam-type) structures made of ceria with dual-scale porosity in the millimeter and micrometer ranges. The larger void size range, with dmean = 2.5 mm and porosity = 0.76-0.82, enables volumetric absorption of concentrated solar radiation for efficient heat transfer to the reaction site during endothermic reduction, while the smaller void size range within the struts, with dmean = 10 µm and strut porosity = 0-0.44, increases the specific surface area for enhanced reaction kinetics during exothermic oxidation with CO2. Characterization is performed via mercury intrusion porosimetry, scanning electron microscopy, and thermogravimetric analysis (TGA). Samples are thermally reduced at 1773 K and subsequently oxidized with CO2 at temperatures in the range 873-1273 K. On average, CO production rates are ten times higher for samples with 0.44 strut porosity than for samples with non-porous struts. The oxidation rate scales with specific surface area and the apparent activation energy ranges from 90 to 135.7 kJ mol(-1). Twenty consecutive redox cycles exhibited stable CO production yield per cycle. Testing of the dual-scale RPC in a solar cavity-receiver exposed to high-flux thermal radiation (3.8 kW radiative power at 3015 suns) corroborated the superior performance observed in the TGA, yielding a shorter cycle time and a mean solar-to-fuel energy conversion efficiency of 1.72%.

SELECTION OF CITATIONS
SEARCH DETAIL
...