Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biochem Mol Biol ; 3(3): 313-21, 2012.
Article in English | MEDLINE | ID: mdl-23097747

ABSTRACT

The catalytic domain, known as light chain (Lc), of the most poisonous botulinum neurotoxins (BoNTs), possesses endoprotease activity that triggers the ultimate poisonous effect to animals and humans. X-ray crystallographic structure of Lc of several BoNT serotypes has identified at least four small ligands at or near the respective active sites. They are sulfate ions in LcA, LcB, and LcE; an acetate ion in LcA; a calcium ion in LcB; and a potassium ion in LcD. Roles of these ligands on the structure and function of the proteins are not known. We have investigated the roles of sulfate, acetate, and calcium on the catalytic activities of LcA, LcB, and LcE using 17-35-residue synthetic peptide substrates. All three ligands inhibited all Lc activities. For LcA and LcB, the order of inhibition effectiveness was calcium>sulfate>acetate. The inhibition effectiveness expressed as IC(50), did not correlate with the occurrence or proximity of the ions to the active site. Moreover, addition of acetate or sulfate to LcA did not affect the near-UV circular dichroism spectra, tryptophan, and tyrosine fluorescence spectra, and mid points of thermal denaturation of LcA. Our results suggest that acetate, sulfate, and calcium nonspecifically interact with BoNT Lc, and their occurrence in the crystal structures could have been due to opportunistic binding to complementary pockets.

2.
Neurochem Res ; 37(1): 214-22, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21964763

ABSTRACT

Gangliosides have long been implicated in multiple pathologies affecting the central nervous system. Empirical studies have suggested the possibility that gangliosides, particularly GD3, work in tandem with pro-inflammatory cytokines, especially tumor necrosis factor alpha (TNFα), to initiate or facilitate cell death in the CNS. As a step toward unraveling the metabolic pathways activated in the pathogenesis of brain cell death, we have surveyed gene expression for a host of cytokines and chemokines in primary brain cell cultures exposed to GD3, GD1b, and TNFα for 24 h. An initial screen of 98 genes on a focused mini-array revealed the expression of at least 28 genes related to cell growth, death, or inflammation in our system of mixed cells cultured from neonatal rat brains. Clear evidence of a differential response to the gangliosides or TNFα was seen in 12 genes. Quantitative PCR was used to validate the response of six of these genes. We found that both GD3 and GD1b, but not TNFα, up-regulated expression of macrophage inflammatory protein 3 (MIP3A) and interleukin-1 receptor 1 (IL1R1), but down-regulated fibroblast growth factor 13 (FGF13). The expression of FGF receptor activating protein 1 (FRAG1) and interleukin-3 receptor alpha (IL3RA) was down-regulated by GD3. Exposure to TNFα resulted in a dramatic up-regulation of IL3RA and chemokine ligand 2 (CCL2), both of which have been implicated in multiple sclerosis. Our results provide strong evidence that the expression of these genes might be critical links in the metabolic cascades leading to cell degeneration and death in the brain.


Subject(s)
Brain/metabolism , Chemokines/metabolism , Cytokines/metabolism , Gangliosides/physiology , Gene Expression/physiology , Tumor Necrosis Factor-alpha/physiology , Animals , Base Sequence , Brain/cytology , Cells, Cultured , DNA Primers , Polymerase Chain Reaction , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...