Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5758, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982085

ABSTRACT

Despite the significance of H2O2-metal adducts in catalysis, materials science and biotechnology, the nature of the interactions between H2O2 and metal cations remains elusive and debatable. This is primarily due to the extremely weak coordinating ability of H2O2, which poses challenges in characterizing and understanding the specific nature of these interactions. Herein, we present an approach to obtain H2O2-metal complexes that employs neat H2O2 as both solvent and ligand. SnCl4 effectively binds H2O2, forming a SnCl4(H2O2)2 complex, as confirmed by 119Sn and 17O NMR spectroscopy. Crystalline adducts, SnCl4(H2O2)2·H2O2·18-crown-6 and 2[SnCl4(H2O2)(H2O)]·18-crown-6, are isolated and characterized by X-ray diffraction, providing the complete characterization of the hydrogen bonding of H2O2 ligands including geometric parameters and energy values. DFT analysis reveals the synergy between a coordinative bond of H2O2 with metal cation and its hydrogen bonding with a second coordination sphere. This synergism of primary and secondary interactions might be a key to understanding H2O2 reactivity in biological systems.

2.
Inorg Chem ; 63(18): 8163-8170, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38662752

ABSTRACT

The redox state of the phthalocyanine in sandwich lanthanide complexes is crucial for their applications. In this work, we demonstrate that the cation-induced supramolecular assembly of crown-substituted phthalocyanine lanthanide complexes Ln[(15C5)4Pc]2 can be used to control the redox state of the ligand simultaneously with the coordination sphere of the central metal. We achieve unprecedented redox switching of phthalocyanine ligands in a double-decker Gd(III) complex, resulting from the intramolecular inclusion of potassium cations between the decks with simultaneous twisting of the ligands (the skew angle between them decreases from 44.61 to 0.21°). Such a structural change leads to an increase in the deck-to-deck distance and drastically facilitates ligand reduction. This process was shown to be anion-dependent: only potassium salts of weak acids (KOPiv and KOAc) induce intramolecular inclusion of cations with redox switching in contrast to salts of strong acids (KBr, KOPic, KSCN, and KPF6), where such a redox process does not occur. This breakthrough opens new avenues for controlling the electrochromic properties, of phthalocyanines, along with other properties, such as electrical conductivity, optics, etc.

3.
Molecules ; 29(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276588

ABSTRACT

1H-NMR spectroscopy of lanthanide complexes is a powerful tool for deriving spectral-structural correlations, which provide a clear link between the symmetry of the coordination environment of paramagnetic metal centers and their magnetic properties. In this work, we have first synthesized a series of homo- (M = M* = Dy) and heteronuclear (M ≠ M* = Dy/Y and Dy/Tb) triple-decker complexes [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc], where BuO- and 15C5- are, respectively, butoxy and 15-crown-5 substituents on phthalocyanine (Pc) ligands. We provide an algorithmic approach to assigning the 1H-NMR spectra of these complexes and extracting the axial component of the magnetic susceptibility tensor, χax. We show how this term is related to the nature of the lanthanide ion and the shape of its coordination polyhedron, providing an experimental basis for further theoretical interpretation of the revealed correlations.

4.
Biophys Rev ; 15(5): 983-998, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37975002

ABSTRACT

Photodynamic therapy (PDT), a rapidly developing method for the treatment of cancer and bacterial diseases, is based on the photosensitization of oxygen to generate reactive oxygen species (ROS) that destroy specific biological targets. Among the various photosensitizers, phthalocyanines (Pc) have attracted particular attention due to their excellent photophysical properties, most of which meet the therapeutic requirements. The statement that aggregation of Pc-based photosensitizers is undesirable because it suppresses ROS generation has become commonplace in PDT. In this review, we have collected and discussed a number of works whose results refute this well-established axiom and show that aggregated forms of phthalocyanines can still exhibit photodynamic activity, in some cases in synergy with the photothermal and optoacoustic effects. In addition, ROS generation can be induced by aggregates under the conditions of sonodynamic therapy.

5.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569539

ABSTRACT

A method for the grafting of unsymmetrical A2BC-type 5,15-bis(4-butoxyphenyl)-10-(4-carboxyphenyl)-20-(phenanthrenoimidazolyl)-porphyrin onto the surface of nanostructured aluminum oxyhydroxide modified with a single SiO2 layer (NAOM) was successfully developed. A straightforward procedure towards surface modification of NAOM allowed us to prepare a new porphyrin-containing hybrid material. The obtained 3D heterostructure was extensively characterized using XPS, TEM and diffuse reflectance spectroscopy. Structural and morphological peculiarities of the inorganic support before and after the immobilization procedure were studied and discussed in detail. The stability of the material against leaching and the porphyrin immobilization ratio ca. 14% by weight were also revealed.


Subject(s)
Nanostructures , Porphyrins , Porphyrins/chemistry , Aluminum , Silicon Dioxide/chemistry , Prospective Studies
6.
Molecules ; 28(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298954

ABSTRACT

In the present work, we report the synthesis of isomeric heteronuclear terbium(III) and yttrium(III) triple-decker phthalocyaninates [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc] (M = Tb, M* = Y or M = Y, M* = Tb, [(BuO)8Pc]2--octa-n-butoxyphthalocyaninato-ligand, [(15C5)4Pc]2--tetra-15-crown-5-phthalocyaninato-ligand). We show that these complexes undergo solvation-induced switching: the conformers in which both metal centers are in square-antiprismatic environments are stabilized in toluene, whereas in dichloromethane, the metal centers M and M* are in distorted prismatic and antiprismatic environments, respectively. This conclusion follows from the detailed analysis of lanthanide-induced shifts in 1H NMR spectra, which makes it possible to extract the axial component of the magnetic susceptibility tensor χaxTb and to show that this term is particularly sensitive to conformational switching when terbium(III) ion is placed in the switchable "M" site. This result provides a new tool for controlling the magnetic properties of lanthanide complexes with phthalocyanine ligands.


Subject(s)
Lanthanoid Series Elements , Terbium , Terbium/chemistry , Models, Molecular , Anisotropy , Ligands , Lanthanoid Series Elements/chemistry , Magnetic Phenomena
7.
Inorg Chem ; 62(26): 10329-10342, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37350420

ABSTRACT

Stabilization of different conformers of sandwich phthalocyaninates by changing the solvation environment has been demonstrated with the examples of new heteroleptic yttrium(III) and terbium(III) triple-decker complexes [(BuO)8Pc]M[(BuO)8Pc]M[(15C5)4Pc] (where M = Y or Tb, [(BuO)8Pc]2- = octa-n-butoxyphthalocyaninato ligand, and [(15C5)4Pc]2- = tetra-15-crown-5-phthalocyaninato ligand). To this end, we have performed a comprehensive crystallographic characterization of two solvates formed by the Y(III) complex with either toluene or dichloromethane. In the solvate with toluene, both pairs of Pc ligands are in staggered conformations, providing both metal cations with a square-antiprismatic environment. In contrast, in the solvate with dichloromethane, only one cation between the BuO- and 15C5-substituted ligands remains in a square-antiprismatic polyhedron, while the pair of BuO-substituted ligands switches to a gauche conformation. In both solvates, the staggered conformations are stabilized by weak interactions of peripheral substituents with solvent molecules. Detailed analysis of the 1H NMR spectra of the isostructural Tb(III) complex in aliphatic and aromatic solvents demonstrates that the stabilization of the corresponding conformations by solvation is also valid in the solution state, resulting in an increase in the axial component of the magnetic susceptibility tensor as the symmetry decreases from staggered to gauche. Thus, solvation-induced conformational switching of lanthanide trisphthalocyaninates can be used as a tool to control their magnetic properties.

8.
Dalton Trans ; 52(24): 8237-8246, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37249348

ABSTRACT

Hydrogen-bonded organic frameworks (HOFs) possessing high crystallinity, simple synthetic procedure and easy regeneration provide high efficiency as multifunctional systems, including applications as proton conductors. Porphyrinylphosphonates having acidic moieties, which can form multiple hydrogen bonds, together with tunable physical-chemical properties of a macrocycle may significantly improve the proton conductivity of such materials. Herein, the synthesis, characterization and proton-conducting properties of a novel anionic HOF based on a new complex of palladium(II) with meso-tetrakis(4-(phosphonatophenyl))porphyrin, HOF-IPCE-1Pd, are reported. Directed structural transformation of the framework by the exchange of dimethylammonium counterions for ammonium cations along with the absorption of ammonia and water molecules led to the formation of a more hydrolytically stable structure of HOF-IPCE-1Pd-NH3, demonstrating the proton conductivity of 1.27 × 10-3 S cm-1 at 85 °C and 85% RH, which is one of the highest among all known HOFs based on porphyrins. It is noteworthy that the reversible absorbance of water/ammonia molecules preserves the crystal structure of HOF-IPCE-1Pd-NH3.

9.
Front Mol Biosci ; 10: 1192794, 2023.
Article in English | MEDLINE | ID: mdl-37255538

ABSTRACT

Porphyrins are well-known photosensitizers (PSs) for antibacterial photodynamic therapy (aPDT), which is still an underestimated antibiotic-free method to kill bacteria, viruses, and fungi. In the present work, we developed a comprehensive tool for predicting the structure and assessment of the photodynamic efficacy of PS molecules for their application in aPDT. We checked it on a series of water-soluble phosphorus(V) porphyrin molecules with OH or ethoxy axial ligands and phenyl/pyridyl peripheral substituents. First, we used biophysical approaches to show the effect of PSs on membrane structure and their photodynamic activity in the lipid environment. Second, we developed a force field for studying phosphorus(V) porphyrins and performed all-atom molecular dynamics simulations of their interactions with bacterial lipid membranes. Finally, we obtained the structure-activity relationship for the antimicrobial activity of PSs and tested our predictions on two models of Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii. Our approach allowed us to propose a new PS molecule, whose MIC50 values after an extremely low light dose of 5 J/cm2 (5.0 ± 0.4 µg/mL for E. coli and 4.9 ± 0.8 µg/mL for A. baumannii) exceeded those for common antibiotics, making it a prospective antimicrobial agent.

10.
Dalton Trans ; 52(16): 5354-5365, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37000472

ABSTRACT

The coordination-driven design and synthesis of new stable supramolecular cluster-porphyrin (CP) hybrids based on an A2-type ruthenium porphyrin 5,15-bis[(p-tolyl)porphyrinato(2-)]ruthenium(carbonyl)(aqua) [RuDTolP(CO)H2O] and an octahedral molybdenum(II) iodide cluster with six terminal isonicotinate ligands (Bu4N)2[{Mo6I8}(OOC-C5H4N)6] (PyMoC) are reported. The stepwise supramolecular assembly of the PyMoC "superoctahedron" with RuDTolP(CO)H2O has been studied by 1H NMR and 2D 1H-1H COSY, 1H-15N HMBC and DOSY techniques, as well as by UV-vis spectroscopy and HR-ESI mass spectrometry. The formation of discrete cluster-porphyrin CPn adducts with different numbers of coordinated porphyrins (n = 1-6), including the geometrical isomers of CP2, CP3 and CP4, has been observed. Using a double equivalent amount of RuDTolP(CO)H2O relative to the cluster (C : P ratio 1 : 12) affords a mixture of CP5 and CP6 species in solution, while only the CP6 complex is crystallized from this system. Fine tuning of crystallization conditions leads to the formation of a more complex architecture CP6+2, where the CP6 assembly incorporates two additional porphyrin molecules bound to the cluster core by hydrogen bonds. Thus, the coordination-based supramolecular approach provides new stable cluster-multiporphyrin 3D arrays based on two types of photosensitizers, which can be promising for the design of photoactive materials.

11.
Molecules ; 28(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770759

ABSTRACT

The ability of P(V) phthalocyanines (Pcs) for efficient singlet oxygen (SO) generation was demonstrated for the first time by the example of unsubstituted and α- and ß-octabutoxy-substituted P(V)Pcs with hydroxy, methoxy and phenoxy ligands in the apical positions of the octahedral P centre. Variation of substituents in Pc ring and P(V) axial ligands allows careful tuning of photophysical and photochemical properties. Indeed, a combination of BuO groups in the ß-positions of the Pc ring and PhO groups as axial ligands provides significant SO generation quantum yields up to 90%; meanwhile, the values of SO generation quantum yields for others investigated compounds vary from 27 to 55%. All the complexes, except α-substituted P(V)Pc, demonstrate fluorescence with moderate quantum yields (10-16%). The introduction of electron-donating butoxy groups, especially in the α-position, increases the photostability of P(V)Pcs. Moreover, it has been shown in the example of ß-BuO-substituted P(V) that the photostability depends on the nature of axial ligands and increases in the next row: OPh < OMe < OH. The presence of oxy/hydroxy axial ligands on the P(V) atom makes it possible to switch the photochemical and photophysical properties of P(V)Pcs by changing the acidity of the media.

12.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499698

ABSTRACT

In this study, organo-inorganic nanohybrids LHGd-MTSPP with enzyme-like activity were prepared by in situ intercalation of anionic 5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrin and its complexes with Zn(II) and Pd(II) (MTSPP, M = 2H, Zn(II) and Pd(II)) into gadolinium layered hydroxide (LHGd). The combination of powder XRD, CHNS analysis, FT-IR, EDX, and TG confirmed the layered structure of the reaction products. The basal interplanar distances in LHGd-MTSPP samples were 22.3-22.6 Å, corresponding to the size of an intercalated tetrapyrrole molecule. According to SEM data, LHGd-MTSPP hybrids consisted of individual lamellar nanoparticles 20-50 nm in thickness. The enzyme-like activity of individual constituents, LHGd-Cl and sulfoporphyrins TSPP, ZnTSPP and PdTSPP, and hybrid LHGd-MTSPP materials, was studied by chemiluminescence analysis using the ABAP/luminol system in phosphate buffer solution. All the individual porphyrins exhibited dose-dependent antioxidant properties with respect to alkylperoxyl radicals at pH 7.4. The intercalation of free base TSPP porphyrin into the LHGd preserved the radical scavenging properties of the product. Conversely, in LHGd-MTSPP samples containing Zn(II) and Pd(II) complexes, the antioxidant properties of the porphyrins changed to dose-dependent prooxidant activity. Thus, an efficient approach to the design and synthesis of advanced LHGd-MTSPP materials with switchable enzyme-like activity was developed.


Subject(s)
Porphyrins , Porphyrins/chemistry , Gadolinium , Spectroscopy, Fourier Transform Infrared , Hydroxides/chemistry
13.
Molecules ; 27(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431937

ABSTRACT

The detailed knowledge about the structure of multinuclear paramagnetic lanthanide complexes for the targeted design of these compounds with special magnetic, sensory, optical and electronic properties is a very important task. At the same time, establishing the structure of such multinuclear paramagnetic lanthanide complexes in solution, using NMR is a difficult task, since several paramagnetic centers act simultaneously on the resulting chemical shift of a particular nucleus. In this paper, we have demonstrated the possibility of molecular structure determination in solution on the example of binuclear triple-decker lanthanide(III) complexes with tetra-15-crown-5-phthalocyanine Ln2[(15C5)4Pc]3 {where Ln = Tb (1) and Dy (2)} by quantitative analysis of the pseudo-contact lanthanide-induced shifts (LIS). The symmetry of complexes was used for the simplification of the calculation of pseudo-contact shifts on the base of the expression for the magnetic susceptibility tensor in the arbitrary oriented magnetic axis system. Good agreement between the calculated and experimental shifts in the 1H NMR spectra indicates the similarity of the structure for the complexes 1 and 2 in solution of CDCl3 and the structure in the crystalline phase, found from the data of the X-ray structural study of the similar complex Lu2[(15C5)4Pc]3. The described approach can be useful for LIS analysis of other polynuclear symmetric lanthanide complexes.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Spectroscopy/methods , Lanthanoid Series Elements/chemistry , Molecular Structure , Magnetic Resonance Imaging , Magnetics
14.
Org Biomol Chem ; 21(1): 69-74, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36448301

ABSTRACT

Ruthenium phthalocyanine complexes bearing n-OBu substituents in the peripheral or non-peripheral positions are efficient catalysts for the selective double or single carbene insertion to the amine N-H bonds. This complementary reactivity of two Ru complexes can be used for the synthesis of asymmetric tertiary amines and diamines bearing different substituents and has been demonstrated by two examples of readily available primary amines using different carbene precursors in successive reactions.

15.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235033

ABSTRACT

Double- and triple-decker lanthanide phthalocyaninates exhibit unique physical-chemical properties, particularly single-molecule magnetism. Among other factors, the magnetic properties of these sandwiches depend on their conformational state, which is determined via the skew angle of the phthalocyanine ligands. Thus, in the present work we report the comprehensive conformational study of substituted terbium(III) and yttrium(III) trisphthalocyaninates in solution depending on the substituents at the periphery of molecules, redox-states and nature of solvents. Conjunction of UV-vis-NIR spectroscopy and quantum-chemical calculations within simplified time-dependent DFT in Tamm-Dancoff approximation provided the spectroscopic signatures of staggered and gauche conformations of trisphthalocyaninates. Altogether, it allowed us to demonstrate that the butoxy-substituted complex behaves as a molecular switcher with controllable conformational state, while the crown-substituted triple-decker complex maintains a staggered conformation regardless of external factors. The analysis of noncovalent interactions within the reduced density gradient approach allowed to shed light on the nature of factors stabilizing certain conformers.


Subject(s)
Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Ligands , Oxidation-Reduction , Solvents , Terbium/chemistry , Yttrium
16.
Chem Soc Rev ; 51(22): 9262-9339, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36315281

ABSTRACT

The unique properties of natural tetrapyrrolic compounds have inspired the rapid growth of research interest in the design and synthesis of artificial porphyrinoids and their metal complexes as a basis of modern functional materials. A special role in the design of such materials is played by sandwich complexes formed by tetrapyrrolic macrocycles with rare earth elements, especially lanthanides. The development of synthetic approaches to the functionalization of tetrapyrrolic compounds and their rare earth complexes has facilitated the intensive development of new applications over the last decade. As a way of expanding the functionalities of rare earth complexes, sophisticated examples have been obtained, including mixed-ligand complexes, π-extended analogues, covalently linked and fused sandwiches, complexes with less-common tetrapyrrols, sandwiches with non-tetrapyrrolic macrocycles and even complexes containing up to six stacked ligands. This review intends to offer a general overview of the preparation of such sophisticated REE tetrapyrrolic sandwiches over the last decade as well as emphasizes the current challenges and perspectives of their application in areas such as single-molecule magnetism (SMM), organic field-effect transistors (OFET), conductive materials and nonlinear optics (NLO).


Subject(s)
Coordination Complexes , Lanthanoid Series Elements , Metals, Rare Earth , Coordination Complexes/chemistry , Ligands
17.
Membranes (Basel) ; 12(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36135866

ABSTRACT

Photodynamic therapy (PDT) is a widely used technique for skin cancer treatment and antimicrobial therapy. An improvement in PDT efficiency requires not only an increase in quantum yield of photosensitizer (PS) molecules but also their applicability for biological systems. Recently, we demonstrated that the activity of porphyrin-based PSs in the lipid membrane environment depends on the nature of the cation in the macrocycle due to its interactions with the lipid phosphate moiety, as well as the orientation of the PS molecules inside the membrane. Here, we report the synthesis, membrane binding properties and photodynamic efficiency of novel dicationic free-base, Ni(II) and Zn(II) pyrazinoporphyrins with terminal tetraalkylammonium units (2H-1, Ni-1 and Zn-1), to show the possibility to enhance the membrane binding of PS molecules, regardless of the central cation. All of these substances adsorb at the lipid membrane, while free-base and Zn(II) porphyrins actively generate singlet oxygen (SO) in the membranes. Thus, this study reveals a new way to tune the PDT activity of PSs in biological membranes through designing the structure of the peripheral groups in the macrocyclic photosensitizer.

18.
Molecules ; 27(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35056834

ABSTRACT

The synthesis and characterization of A3B-type phthalocyanines, ZnPc1-4, bearing bulky 2,6-diisopropylphenoxy-groups or chlorine atoms on isoindoline units "A" and either one or two carboxylic anchors on isoindoline unit "B" are reported. A comparison of molecular modelling with the conventional time dependent-density functional theory (TD-DFT) approach and its simplified sTD-DFT approximation provides further evidence that the latter method accurately reproduces the key trends in the spectral properties, providing colossal savings in computer time for quite large molecules. This demonstrates that it is a valuable tool for guiding the rational design of new phthalocyanines for practical applications.

19.
Small ; 18(2): e2104306, 2022 01.
Article in English | MEDLINE | ID: mdl-34655166

ABSTRACT

Achievement of information storage at molecular level remains a pressing task in miniaturization of computing technology. One of the promising approaches for its practical realization is development of nanoscale molecular switching materials including redox-active systems. The present work demonstrates a concept of expansion of a number of available redox-states of self-assembled monolayers through supramolecular approach. For this, the authors synthesized an octopus-like heteroleptic terbium(III) bisphthalocyaninate bearing one ligand with eight thioacetate-terminated "tentacles" (octopus-Pc) and a ligand with four crown-ether moieties (H2 [(15C5)4 Pc]). It is shown that octopus-Pc forms stable monolayers on gold, where its face-on orientation allows for subsequent binding of crown-phthalocyanine molecules via potassium ion bridges. This chemistry is utilized to form a heterogeneous bilayer, in which a single molecule thick adlayer brings an additional redox-state to the system, thus expanding the multistability of the system as a whole. All four redox states available to this system exhibit characteristic absorbance in visible range, allowing for the switching to be easily read out using optical density measurements. The proposed approach can be used in wide range of switchable materials-single-molecule magnets, conductive, and optical devices, etc.


Subject(s)
Crown Ethers , Octopodiformes , Animals , Crown Ethers/chemistry , Ions , Ligands , Oxidation-Reduction
20.
Biosensors (Basel) ; 13(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36671881

ABSTRACT

The most relevant technique for portable (on-chip) sensors is Surface Enhanced Raman Scattering (SERS). This strategy crashes in the case of large (biorelevant) molecules and nano-objects, whose SERS spectra are irreproducible for "homeopathic" concentrations. We suggested solving this problem by SERS-mapping. We analyzed the distributions of SERS parameters for relatively "small" (malachite green (MG)) and "large" (phthalocyanine, H2Pc*) molecules. While fluctuations of spectra for "small" MG were negligible, noticeable distribution of spectra was observed for "large" H2Pc*. We show that the latter is due to a random arrangement of molecules with respect to "hot spot" areas, which have limited sizes, thus amplifying the lines corresponding to vibrations of different molecule parts. We have developed a method for engineering low-cost SERS substrates optimized for the best enhancement efficiency and a measurement protocol to obtain a reliable Raman spectrum, even for a countable number of large molecules randomly distributed over the substrate.


Subject(s)
Metal Nanoparticles , Nanostructures , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Spectrum Analysis, Raman/methods , Rosaniline Dyes
SELECTION OF CITATIONS
SEARCH DETAIL
...