Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 249: 115988, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38194814

ABSTRACT

Alzheimer's disease (AD), in addition to being the most common cause of dementia, is very difficult to diagnose, with the 42-amino acid form of Aß (Aß-42) being one of the main biomarkers used for this purpose. Despite the enormous efforts made in recent years, the technologies available to determine Aß-42 in human samples require sophisticated instrumentation, present high complexity, are sample and time-consuming, and are costly, highlighting the urgent need not only to develop new tools to overcome these limitations but to provide an early detection and treatment window for AD, which is a top-challenge. In recent years, micromotor (MM) technology has proven to add a new dimension to clinical biosensing, enabling ultrasensitive detections in short times and microscale environments. To this end, here an electrochemical immunoassay based on polypyrrole (PPy)/nickel (Ni)/platinum nanoparticles (PtNPs) MM is proposed in a pioneering manner for the determination of Aß-42 in left prefrontal cortex brain tissue, cerebrospinal fluid, and plasma samples from patients with AD. MM combines the high binding capacity of their immunorecognition external layer with self-propulsion through the catalytic generation of oxygen bubbles in the internal layer due to decomposition of hydrogen peroxide as fuel, allowing rapid bio-detection (15 min) of Aß-42 with excellent selectivity and sensitivity (LOD = 0.06 ng/mL). The application of this disruptive technology to the analysis of just 25 µL of the three types of clinical samples provides values concordant with the clinical values reported, thus confirming the potential of the MM approach to assist in the reliable, simple, fast, and affordable diagnosis of AD by determining Aß-42.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Metal Nanoparticles , Humans , Polymers , Biosensing Techniques/methods , Platinum , Pyrroles , Amyloid beta-Peptides , Immunoassay/methods , Biomarkers/cerebrospinal fluid , Peptide Fragments/chemistry
2.
Mikrochim Acta ; 191(2): 106, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38240873

ABSTRACT

Given the long-life expectancy of the newborn, research aimed at improving sepsis diagnosis and management in this population has been recognized as cost-effective, which at early stages continues to be a tremendous challenge. Despite there is not an ideal-specific biomarker, the simultaneous detection of biomarkers with different behavior during an infection such as procalcitonin (PCT) as high specificity biomarker with one of the earliest biomarkers in sepsis as interleukin-6 (IL-6) increases diagnostic performance. This is not only due to their high positive predictive value but also, since it can also help the clinician to rule out infection and thus avoid the use of antibiotics, due to their high negative predictive value. To this end, we explore a cutting-edge micromotor (MM)-based OFF-ON dual aptassay for simultaneous determination of both biomarkers in 15 min using just 2 µL of sample from low-birth-weight neonates with gestational age less than 32 weeks and birthweight below 1000 g with clinical suspicion of late-onset sepsis. The approach reached the high sensitivities demanded in the clinical scenario (LODPCT = 0.003 ng/mL, LODIL6 = 0.15 pg/mL) with excellent correlation performance (r > 0.9990, p < 0.05) of the MM-based approach with the Hospital method for both biomarkers during the analysis of diagnosed samples and reliability (Er < 6% for PCT, and Er < 4% for IL-6). The proposed approach also encompasses distinctive technical attributes in a clinical scenario since its minimal sample volume requirements and expeditious results compatible with few easy-to-obtain drops of heel stick blood samples from newborns admitted to the neonatal intensive care unit. This would enable the monitoring of both sepsis biomarkers within the initial hours after the manifestation of symptoms in high-risk neonates as a valuable tool in facilitating prompt and well-informed decisions about the initiation of antibiotic therapy.These results revealed the asset behind micromotor technology for multiplexing analysis in diagnosing neonatal sepsis, opening new avenues in low sample volume-based diagnostics.


Subject(s)
Neonatal Sepsis , Sepsis , Infant, Newborn , Humans , Infant , Neonatal Sepsis/diagnosis , Neonatal Sepsis/drug therapy , Calcitonin , C-Reactive Protein/analysis , Interleukin-6 , Reproducibility of Results , Cost-Benefit Analysis , Sepsis/diagnosis , Biomarkers , Procalcitonin , Anti-Bacterial Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...