Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spine (Phila Pa 1976) ; 25(10): 1218-26, 2000 May 15.
Article in English | MEDLINE | ID: mdl-10806497

ABSTRACT

STUDY DESIGN: The current study was designed to determine whether progressive spinal cord damage during residual compression is caused by low blood flow and ischemia. OBJECTIVES: The purpose of this experiment was to determine the effects of sustained spinal cord compression on regional blood flow and evoked potential recovery after time-dependent decompression. SUMMARY OF BACKGROUND DATA: Spinal cord injury after trauma is commonly associated with residual cord compression. Although decreased blood flow has been reported after spinal cord contusion, the effect of residual spinal cord displacement on reperfusion of blood flow or recovery of neurologic function remains unclear. METHODS: Eighteen beagles were anesthetized, and the spinal cord at T13 was loaded dorsally under precision loading conditions until evoked potential amplitudes were reduced by 50%. At this function endpoint, spinal cord displacement was maintained for 90 minutes. Somatosensory-evoked potentials were measured at regular intervals until 3 hours after decompression. Regional spinal cord blood flow was measured with a fluorescent microsphere technique at regular time points during and after spinal cord decompression. RESULTS: Within 5 minutes after dynamic cord compression was discontinued, evoked potential signals were absent in all dogs. Evoked potential recovery was observed after decompression in 7 of 18 dogs. Regional spinal cord blood flow at baseline, 21.8 +/- 1.9 mL/100 g. min (mean +/- SE), decreased to 3.9 +/- 0.9 mL/100 g. min after dynamic compression was discontinued. Although spinal cord-piston interface pressure dissipated by 87% of maximum interface pressure during sustained compression, mean blood flow recovered to only 34% of baseline flow. In the 7 dogs that recovered evoked potential function, blood flow increased to 11.3 +/- 2.7 mL/100g. min immediately before decompression (P < or = 0.05). In the 11 dogs that did not recover evoked potential function after decompression, regional blood flow did not improve during sustained compression. CONCLUSIONS: Recovery of evoked potential function after decompression corresponded with a greater return of blood flow during sustained displacement and greater reperfusion of blood flow associated with decompression.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Spinal Cord Compression/physiopathology , Spinal Cord/blood supply , Animals , Blood Pressure , Decompression, Surgical , Disease Models, Animal , Dogs , Monitoring, Physiologic , Regional Blood Flow , Reperfusion Injury/physiopathology , Spinal Cord/physiopathology , Spinal Cord Compression/surgery , Weight-Bearing
2.
J Neurotrauma ; 14(12): 951-62, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9475376

ABSTRACT

Although surgical decompression is often advocated for acute spinal cord injury, the timing and efficacy of early treatment have not been clinically proven. Our objectives were to determine the importance of early spinal cord decompression on recovery of evoked potential conduction under precision loading conditions and to determine if regional vascular mechanisms could be linked to electrophysiologic recovery. Twenty-one mature beagles were anesthetized and mechanically ventilated to maintain normal respiratory and acid-base balance. Somatosensory-evoked potentials from the upper and lower extremities were measured at regular intervals. The spinal cord at T-13 was loaded dorsally under precision loading conditions until evoked potential amplitudes had been reduced by 50%. At this functional endpoint, spinal cord displacement was maintained for either 30 (n = 7), 60 (n = 8), or 180 min (n = 6). Spinal cord decompression was followed by a 3-h monitoring period. Regional spinal cord blood flow was measured with fluorescent microspheres at baseline (following laminectomy) immediately after stopping dynamic cord compression, 5, 15, and 180 min after decompression. Within 5 min after stopping dynamic compression, evoked potential signals were absent in all dogs. We observed somatosensory-evoked potential recovery in 6 of 7 dogs in the 30-min compression group, 5 of 8 dogs in the 60-min compression group, and 0 of 6 dogs in the 180-min compression group. Recovery in the 30- and 60-min groups varied significantly from the 180-min group (p < 0.05). Regional spinal cord blood flow at baseline, 21.4+/-2.2 ml/100/g/min (combined group mean +/- SE) decreased to 4.1+/-0.7 ml/100 g/min after stopping dynamic compression. Reperfusion flows after decompression were inversely related to duration of compression. Of the 7 dogs in the 30 min compression group, 5 min after decompression the blood flow was 49.1+/-3.1 ml/100 g/min, which was greater than two times baseline. In the 180-min compression group early post-decompression blood flow, 19.8+/-6.2 ml/100 g/min, was not significantly different than baseline. Of the 8 dogs in the 60-min compression group, 5 who recovered evoked potential conduction revealed a lower spinal cord blood flow sampled immediately after stopping dynamic compression, 2.1+/-0.4 ml/100 g/min, compared to the 3 who did not recover where blood flow was 8.4+/-2.1 ml/100 g/min (p < 0.05). Reperfusion flows measured as the interval change in blood flow between the time dynamic compression was stopped to 5, 15, or 180 min after decompression, were significantly greater in those dogs that recovered evoked potential function (p < 0.05). Three hours after decompression, spinal cord blood flow in the 3 dogs in the 60-min compression group with no recovery, 11.1+/-2.1 ml/100 g/min, was significantly less than the spinal cord blood flow of the recovered group (n = 5), 20.5+/-2.2 ml/100 g/min. These data illustrate the importance of early time-dependent events following precision dynamic spinal cord loading and sustained compression conditions. Spinal cord decompression performed within 1 h of evoked potential loss resulted in significant electrophysiologic recovery after 3 h of monitoring. This study showed that the degree of early reperfusion hyperemia after decompression was inversely proportional to the duration of spinal cord compression and proportional to electrophysiologic recovery. Residual blood flow during the sustained compression period was significantly higher in those dogs that did not recover evoked potential function after decompression suggesting a reperfusion injury. These results indicate that, after precise dynamic spinal cord loading to a point of functional conduction deficit (50% decline in evoked potential amplitude), a critical time period exists where intervention in the form of early spinal cord decompression can lead to effective recovery of electrophysiologic function in the 1- to 3-h post-decompression p


Subject(s)
Decompression , Spinal Cord Injuries/therapy , Animals , Biomechanical Phenomena , Blood Gas Analysis , Blood Pressure/physiology , Dogs , Electrophysiology , Evoked Potentials, Somatosensory/physiology , Microspheres , Regional Blood Flow/physiology , Spinal Cord/blood supply , Spinal Cord Injuries/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...