Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(24): 25638-25645, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911803

ABSTRACT

In order to reduce infections, porous NiTi alloys with 62% porosity were obtained by self-propagating high-temperature synthesis with the addition of 0.2 and 0.5 at. % silver nanoparticles. Silver significantly improved the alloys' antibacterial activity without compromising cytocompatibility. An alloy with 0.5 at. % Ag showed the best antibacterial ability against Staphylococcus epidermidis. All alloys exhibited good biocompatibility with no cellular toxicity against embryonic fibroblast 3T3 cells. Clinical evaluation of the results after implantation showed a complete absence of purulent-inflammatory complications in all animals. Even distribution of silver nanoparticles in the surface layer of the porous NiTi alloy provides a uniform antibacterial effect.

2.
Materials (Basel) ; 16(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37048875

ABSTRACT

Coatings based on calcium phosphate with thicknesses of 0.5 and 2 µm were obtained by high-frequency magnetron sputtering on NiTi substrates in an argon atmosphere. The coating was characterized using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and in vitro cytocompatibility and bioactivity studies. A biphasic coating of tricalcium phosphate (Ca3(PO4)2) and hydroxyapatite (Ca10(PO4)6(OH)2) with a 100% degree of crystallinity was formed on the surface. The layer enriched in calcium, phosphorus, and oxygen was observed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Scanning electron microscopy showed that the surface structure is homogeneous without visible defects. The 2 µm thick coating obtained by sputtering with a deposition time of 4 h and a deposition rate of 0.43 µm/h is uniform, contains the highest amount of the calcium phosphate phase, and is most suitable for the faster growth of cells and accelerated formation of apatite layers. Samples with calcium phosphate coatings do not cause hemolysis and have a low cytotoxicity index. The results of immersion in a solution simulating body fluid show that NiTi with the biphasic coating promotes apatite growth, which is beneficial for biological activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...