Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888171

ABSTRACT

Vaccinium floribundum Kunth, known as "mortiño, " is an endemic shrub species of the Andean region adapted to harsh conditions in high-altitude ecosystems. It plays an important ecological role as a pioneer species in the aftermath of deforestation and human-induced fires within paramo ecosystems, emphasizing its conservation value. While previous studies have offered insights into the genetic diversity of mortiño, comprehensive genomic studies are still missing to fully understand the unique adaptations of this species and its population status, highlighting the importance of generating a reference genome for this plant. ONT and Illumina sequencing were used to establish a reference genome for this species. Three different de novo genome assemblies were generated and compared for quality, continuity and completeness. The Flye assembly was selected as the best and refined by filtering out short ONT reads, screening for contaminants and genome scaffolding. The final assembly has a genome size of 529 MB, containing 1,317 contigs and 97% complete BUSCOs, indicating a high level of integrity of the genome. Additionally, the LAI Index of 12.93, further categorizes this assembly as a reference genome. The genome of V. floribundum reported in this study is the first reference genome generated for this species, providing a valuable tool for further studies. This high-quality genome, based on the quality and completeness parameters obtained, will not only help uncover the genetic mechanisms responsible for its unique traits and adaptations to high-altitude ecosystems, but will also contribute to conservation strategies for a species endemic to the Andes.

2.
Front Plant Sci ; 13: 903661, 2022.
Article in English | MEDLINE | ID: mdl-35755685

ABSTRACT

The introduction of Lupinus mutabilis (Andean lupin) in Europe will provide a new source of protein and oil for plant-based diets and biomass for bio-based products, while contributing to the improvement of marginal soils. This study evaluates for the first time the phenotypic variability of a large panel of L. mutabilis accessions both in their native environment and over two cropping conditions in Europe (winter crop in the Mediterranean region and summer crop in North-Central Europe), paving the way for the selection of accessions adapted to specific environments. The panel of 225 accessions included both germplasm pools from the Andean region and breeding lines from Europe. Notably, we reported higher grain yield in Mediterranean winter-cropping conditions (18 g/plant) than in the native region (9 g/plant). Instead, North European summer-cropping conditions appear more suitable for biomass production (up to 2 kg/plant). The phenotypic evaluation of 16 agronomical traits revealed significant variation in the panel. Principal component analyses pointed out flowering time, yield, and architecture-related traits as the main factors explaining variation between accessions. The Peruvian material stands out among the top-yielding accessions in Europe, characterized by early lines with high grain yield (e.g., LIB065, LIB072, and LIB155). Bolivian and Ecuadorian materials appear more valuable for the selection of genotypes for Andean conditions and for biomass production in Europe. We also observed that flowering time in the different environments is influenced by temperature accumulation. Within the panel, it is possible to identify both early and late genotypes, characterized by different thermal thresholds (600°C-700°C and 1,000-1,200°C GDD, respectively). Indications on top-yielding and early/late accessions, heritability of morpho-physiological traits, and their associations with grain yield are reported and remain largely environmental specific, underlining the importance of selecting useful genetic resources for specific environments. Altogether, these results suggest that the studied panel holds the genetic potential for the adaptation of L. mutabilis to Europe and provide the basis for initiating a breeding program based on exploiting the variation described herein.

3.
PeerJ ; 8: e9597, 2020.
Article in English | MEDLINE | ID: mdl-32944417

ABSTRACT

Capuli (Prunus serotina subsp. capuli) is a tree species that is widely distributed in the northern Andes. In Prunus, fruit set and productivity appears to be limited by gametophytic self-incompatibility (GSI) which is controlled by the S-Locus. For the first time, this research reveals the molecular structure of the capuli S-RNase (a proxy for S-Locus diversity) and documents how S-Locus diversity influences GSI in the species. To this end, the capuli S-RNase gene was amplified and sequenced in order to design a CAPS (Cleaved Amplified Polymorphic Sequence) marker system that could unequivocally detect S-alleles by targeting the highly polymorphic C2-C3 S-RNase intra-genic region. The devised system proved highly effective. When used to assess S-Locus diversity in 15 P. serotina accessions, it could identify 18 S-alleles; 7 more than when using standard methodologies for the identification of S-alleles in Prunus species. CAPS marker information was subsequently used to formulate experimental crosses between compatible and incompatible individuals (as defined by their S-allelic identity). Crosses between heterozygote individuals with contrasting S-alleles resulted in normal pollen tube formation and growth. In crosses between individuals with exactly similar S-allele identities, pollen tubes often showed morphological alterations and arrested development, but for some (suspected) incompatible crosses, pollen tubes could reach the ovary. The latter indicates the possibility of a genotype-specific breakdown of GSI in the species. Overall, this supports the notion that S-Locus diversity influences the reproductive patterns of Andean capuli and that it should be considered in the design of orchards and the production of basic propagation materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...