Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Infect Dis ; 71(4): 1000-1007, 2020 08 14.
Article in English | MEDLINE | ID: mdl-31773126

ABSTRACT

BACKGROUND: Campylobacter infection is associated with impaired growth of children, even in the absence of symptoms. To examine the underlying mechanisms, we evaluated associations between Campylobacter infection, linear growth, and fecal microbial community features in a prospective birth cohort of 271 children with a high burden of diarrhea and stunting in the Amazonian lowlands of Peru. METHODS: Campylobacter was identified using a broadly reactive, genus-specific enzyme-linked immunosorbent assay. 16S rRNA-based analyses were used to identify bacterial taxa in fecal samples at ages 6, 12, 18, and 24 months (N = 928). Associations between infection, growth, and gut microbial community composition were investigated using multiple linear regression adjusting for within-child correlations, age, and breastfeeding. Indicator species analyses identified taxa specifically associated with Campylobacter burden. RESULTS: Ninety-three percent (251) of children had Campylobacter present in asymptomatic fecal samples during the follow-up period. A 10% increase in the proportion of stools infected was associated with mean reductions of 0.02 length-for-age z scores (LAZ) at 3, 6, and 9 months thereafter (P < .01). We identified 13 bacterial taxa indicative of cumulative Campylobacter burden and 14 taxa significantly associated with high or low burden of enteroaggregative Escherichia coli, norovirus, or Giardia. CONCLUSIONS: Campylobacter infection is common in this cohort and associated with changes in microbial community composition. These results support the notion that disruptions to the fecal microbiota may help explain the observed effects of asymptomatic infections on growth in early life.


Subject(s)
Campylobacter Infections , Campylobacter , Gastrointestinal Microbiome , Adolescent , Adult , Campylobacter Infections/epidemiology , Child , Feces , Female , Humans , Infant , Peru/epidemiology , Prospective Studies , RNA, Ribosomal, 16S/genetics , Young Adult
2.
Clin Infect Dis ; 71(4): 989-999, 2020 08 14.
Article in English | MEDLINE | ID: mdl-31773127

ABSTRACT

BACKGROUND: Detrimental effects of diarrhea on child growth and survival are well documented, but details of the underlying mechanisms remain poorly understood. Recent evidence demonstrates that perturbations to normal development of the gut microbiota in early life may contribute to growth faltering and susceptibility to related childhood diseases. We assessed associations between diarrhea, gut microbiota configuration, and childhood growth in the Peruvian Amazon. METHODS: Growth, diarrhea incidence, illness, pathogen infection, and antibiotic exposure were assessed monthly in a birth cohort of 271 children aged 0-24 months. Gut bacterial diversity and abundances of specific bacterial taxa were quantified by sequencing 16S rRNA genes in fecal samples collected at 6, 12, 18, and 24 months. Linear and generalized linear models were used to determine whether diarrhea was associated with altered microbiota and, in turn, if features of the microbiota were associated with the subsequent risk of diarrhea. RESULTS: Diarrheal frequency, duration, and severity were negatively associated with bacterial diversity and richness (P < .05). Children born stunted (length-for-age z-score [LAZ] ≤ -2) who were also severely stunted (LAZ ≤ -3) at the time of sampling exhibited the greatest degree of diarrhea-associated reductions in bacterial diversity and the slowest recovery of bacterial diversity after episodes of diarrhea. Increased bacterial diversity was predictive of reduced subsequent diarrhea from age 6 to 18 months. CONCLUSIONS: Persistent, severe growth faltering may reduce the gut microbiota's resistance and resilience to diarrhea, leading to greater losses of diversity and longer recovery times. This phenotype, in turn, denotes an increased risk of future diarrheal disease and growth faltering.


Subject(s)
Gastrointestinal Microbiome , Adolescent , Adult , Child , Child, Preschool , Diarrhea/epidemiology , Feces , Humans , Infant , Infant, Newborn , Peru/epidemiology , RNA, Ribosomal, 16S/genetics , Young Adult
3.
Appl Opt ; 52(19): 4596-600, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23842256

ABSTRACT

A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.

4.
Nature ; 486(7402): 222-7, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22699611

ABSTRACT

Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, here we characterize bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy children and adults from the Amazonas of Venezuela, rural Malawi and US metropolitan areas and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial assemblages and functional gene repertoires were noted between US residents and those in the other two countries. These distinctive features are evident in early infancy as well as adulthood. Our findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations and the impact of westernization.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biodiversity , Intestines/microbiology , Metagenome , Adolescent , Adult , Age Factors , Aged , Child , Child, Preschool , Feces/microbiology , Female , Geography , Humans , Infant , Malawi , Male , Middle Aged , Phylogeny , RNA, Ribosomal, 16S/genetics , Twins, Dizygotic , Twins, Monozygotic , United States , Venezuela , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL