Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.302
Filter
1.
Clin Radiol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-39003166

ABSTRACT

AIM: The aim of this study was to describe the technique of DCMRL to identify central lymphatic abnormalities in patients with primary lymphatic anomalies and discuss utility of the findings. MATERIALS AND METHODS: Twenty-eight patients with primary lymphatic abnormalities underwent dynamic magnetic resonance imaging (MRI) following injection of gadolinium directly into inguinal lymph nodes at a tertiary lymphovascular referral center. RESULTS: Technical success was achieved in 23 patients (82.1%). Pathological imaging findings included obstructed, hypoplastic, or absent lymphatic channels with collateralization/rerouting or reflux of flow, lymphangiectasia, lymphatic pseudoaneurysms, and lymph leaks. Protocol modifications for improved imaging are highlighted including technical aspects of lymph node injection, image acquisition and MRI parameters. In two patients, imaging findings warranted embolization of the abnormal lymphatic channels with subsequent symptomatic improvement. CONCLUSION: DCMRL has been shown to be a safe, reproducible technique in patients with primary lymphatic anomalies enabling imaging of the central lymphatic system.

2.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979330

ABSTRACT

Variants in the poorly characterised oncoprotein, MORC2, a chromatin remodelling ATPase, lead to defects in epigenetic regulation and DNA damage response. The C-terminal domain (CTD) of MORC2, frequently phosphorylated in DNA damage, promotes cancer progression, but its role in chromatin remodelling remains unclear. Here, we report a molecular characterisation of full-length, phosphorylated MORC2, demonstrating its preference for binding open chromatin and functioning as a DNA sliding clamp. We identified a phosphate interacting motif within the CTD that dictates ATP hydrolysis rate and cooperative DNA binding. The DNA binding impacts several structural domains within the ATPase region. We provide the first visual proof that MORC2 induces chromatin remodelling through ATP hydrolysis-dependent DNA compaction, regulated by its phosphorylation state. These findings highlight phosphorylation of MORC2 CTD as a key modulator of chromatin remodelling, presenting it as a potential therapeutic target.

3.
PLoS One ; 19(7): e0299975, 2024.
Article in English | MEDLINE | ID: mdl-38959242

ABSTRACT

Skeletal muscle growth is an economically important trait in the cattle industry. Secreted muscle-derived proteins, referred to as myokines, have important roles in regulating the growth, metabolism, and health of skeletal muscle in human and biomedical research models. Accumulating evidence supports the importance of myokines in skeletal muscle and whole-body health, though little is known about the potential presence and functional significance of these proteins in cattle. This study evaluates and confirms that secreted proteins acidic and rich in cysteine (SPARC), fibroblast growth factor 21 (FGF-21), myostatin (MSTN), and decorin (DCN) are expressed and SPARC, FGF-21, and DCN are secreted by primary bovine satellite cells from 3- (BSC3; n = 3) and 11- (BSC11; n = 3) month -old commercial angus steers. Cells were cultured and collected at zero, 12, 24, and 48 hours to characterize temporal expression and secretion from undifferentiated and differentiated cells. The expression of SPARC was higher in the undifferentiated (p = 0.04) and differentiated (p = 0.07) BSC11 than BSC3. The same was observed with protein secretion from undifferentiated (p <0.0001) BSC11 compared to BSC3. Protein secretion of FGF-21 was higher in undifferentiated BSC11 (p < 0.0001) vs. BSC3. DCN expression was higher in differentiated BSC11 (p = 0.006) vs. BSC3. Comparing undifferentiated vs. differentiated BSC, MSTN expression was higher in differentiated BSC3 (p ≤ 0.001) for 0, 12, and 24 hours and in BSC11 (p ≤ 0.03) for 0, 12, 24, and 48 hours. There is also a change over time for SPARC expression (p ≤ 0.03) in undifferentiated and differentiated BSC and protein secretion (p < 0.0001) in undifferentiated BSC, as well as FGF-21 expression (p = 0.007) in differentiated BSC. This study confirms SPARC, FGF-21, and DCN are secreted, and SPARC, FGF-21, MSTN, and DCN are expressed in primary bovine muscle cells with age and temporal differences.


Subject(s)
Cell Differentiation , Decorin , Fibroblast Growth Factors , Osteonectin , Animals , Cattle , Osteonectin/metabolism , Osteonectin/genetics , Fibroblast Growth Factors/metabolism , Decorin/metabolism , Cells, Cultured , Male , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Aging/metabolism , Myostatin/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
4.
Hear Res ; 450: 109068, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38936172

ABSTRACT

BACKGROUND & RATIONALE: In prior work using non-speech stimuli, children with hearing loss show impaired perception of binaural cues and no significant change in cortical responses to bilateral versus unilateral stimulation. Aims of the present study were to: 1) identify bilateral responses to envelope and spectral components of a speech syllable using the frequency-following response (FFR), 2) determine if abnormalities in the bilateral FFR occur in children with hearing loss, and 3) assess functional consequences of abnormal bilateral FFR responses on perception of binaural timing cues. METHODS: A single-syllable speech stimulus (/dα/) was presented to each ear individually and bilaterally. Participants were 9 children with normal hearing (MAge = 12.1 ± 2.5 years) and 6 children with bilateral hearing loss who were experienced bilateral hearing aid users (MAge = 14.0 ± 2.6 years). FFR temporal and spectral peak amplitudes were compared between listening conditions and groups using linear mixed model regression analyses. Behavioral sensitivity to binaural cues were measured by lateralization responses as coming from the right or left side of the head. RESULTS: Both temporal and spectral peaks in FFR responses increased in amplitude in the bilateral compared to unilateral listening conditions in children with normal hearing. These measures of "bilateral advantage" were reduced in the group of children with bilateral hearing loss and associated with decreased sensitivity to interaural timing differences. CONCLUSION: This study is the first to show that bilateral responses in both temporal and spectral domains can be measured in children using the FFR and is altered in children with hearing loss with consequences to binaural hearing.

5.
Genome Res ; 34(4): 556-571, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38719473

ABSTRACT

H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.


Subject(s)
Euchromatin , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Methyltransferases , Repressor Proteins , Transcription, Genetic , Euchromatin/metabolism , Euchromatin/genetics , Histones/metabolism , Histones/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Animals , Mice , Humans , Gene Expression Regulation , Cell Line
6.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557491

ABSTRACT

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.


Subject(s)
Abnormalities, Multiple , Acetylcarnitine , Congenital Hypothyroidism , Craniofacial Abnormalities , Histone Acetyltransferases , Intellectual Disability , Joint Instability , Animals , Humans , Mice , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/genetics , Acetylation , Acetylcarnitine/pharmacology , Acetylcarnitine/therapeutic use , Blepharophimosis , Chromatin , Craniofacial Abnormalities/drug therapy , Craniofacial Abnormalities/genetics , Exons , Facies , Heart Defects, Congenital , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones/genetics , Intellectual Disability/drug therapy , Intellectual Disability/genetics
7.
Int J Surg ; 110(6): 3433-3439, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38489664

ABSTRACT

BACKGROUND: Infections following postmastectomy implant-based breast reconstruction (IBR) can compromise surgical outcomes and lead to significant morbidity. This study aimed to discern the timing of infections in two-stage IBR and associated risk factors. METHOD: A review of electronic health records was conducted on 1096 breasts in 1058 patients undergoing two-stage IBR at Seoul National University Hospital (2015-2020). Infections following the first-stage tissue expander (TE) insertion and second-stage TE exchange were analyzed separately, considering associated risk factors. RESULTS: Over a median follow-up of 53.5 months, infections occurred in 2.9% (32/1096) after the first stage and 4.1% (44/1070) after the second stage. Infections following the first-stage procedure exhibited a bimodal distribution across time, while those after the second-stage procedure showed a unimodal pattern. When analyzing risk factors for infection after the first-stage procedure, axillary lymph node dissection (ALND) was associated with early (≤7 weeks) infection, while both ALND and obesity were independent predictors of late (>7 weeks) infection. For infections following the second-stage procedure, obesity, postmastectomy radiotherapy, a history of expander infection, ALND, and the use of textured implants were identified as independent risk factors. Postmastectomy radiotherapy was related to non-salvaged outcomes after infection following both stages. CONCLUSION: Infections following first and second-stage IBR exhibit distinct timelines reflecting different pathophysiology. Understanding these timelines and associated risk factors will inform patient selection for IBR and aid in tailored postoperative surveillance planning. These findings contribute to refining patient suitability for IBR and optimizing personalized postoperative care strategies.


Subject(s)
Breast Implants , Mastectomy , Humans , Female , Retrospective Studies , Middle Aged , Risk Factors , Adult , Mastectomy/adverse effects , Breast Implants/adverse effects , Breast Neoplasms/surgery , Mammaplasty/adverse effects , Mammaplasty/methods , Breast Implantation/adverse effects , Surgical Wound Infection/epidemiology , Surgical Wound Infection/etiology , Tissue Expansion Devices/adverse effects , Aged , Republic of Korea/epidemiology , Time Factors
8.
Stem Cell Reports ; 19(4): 469-485, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38518784

ABSTRACT

The histone lysine acetyltransferase KAT6B (MYST4, MORF, QKF) is the target of recurrent chromosomal translocations causing hematological malignancies with poor prognosis. Using Kat6b germline deletion and overexpression in mice, we determined the role of KAT6B in the hematopoietic system. We found that KAT6B sustained the fetal hematopoietic stem cell pool but did not affect viability or differentiation. KAT6B was essential for normal levels of histone H3 lysine 9 (H3K9) acetylation but not for a previously proposed target, H3K23. Compound heterozygosity of Kat6b and the closely related gene, Kat6a, abolished hematopoietic reconstitution after transplantation. KAT6B and KAT6A cooperatively promoted transcription of genes regulating hematopoiesis, including the Hoxa cluster, Pbx1, Meis1, Gata family, Erg, and Flt3. In conclusion, we identified the hematopoietic processes requiring Kat6b and showed that KAT6B and KAT6A synergistically promoted HSC development, function, and transcription. Our findings are pertinent to current clinical trials testing KAT6A/B inhibitors as cancer therapeutics.


Subject(s)
Hematologic Neoplasms , Hematopoiesis , Mice , Animals , Cell Differentiation/genetics , Hematopoietic Stem Cells , Histone Acetyltransferases/genetics
9.
Animals (Basel) ; 14(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473094

ABSTRACT

The myokines interleukin 6 (IL-6), interleukin 15 (IL-15), myonectin (CTRP15), fibronectin type III domain containing protein 5/irisin (FNDC5), and brain-derived neurotrophic factor (BDNF) are associated with skeletal muscle cell proliferation, differentiation, and muscle hypertrophy in biomedical model species. This study evaluated whether these myokines are produced by cultured bovine satellite cells (BSCs) harvested from 3- and 11-month-old commercial black Angus steers and if the expression and secretion of these targets change across 0, 12, 24, and 48 h in vitro. IL-6, IL-15, FNDC5, and BDNF expression were greater (p ≤ 0.05) in the differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. CTRP15 expression was greater (p ≤ 0.03) in the undifferentiated vs. differentiated BSCs at 24 and 48 h. IL-6 and CTRP15 protein from culture media were greater (p ≤ 0.04) in undifferentiated vs. differentiated BSCs at 0, 12, 24, and 48 h. BDNF protein was greater in the media of differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. IL-6, 1L-15, FNDC5, and BDNF are expressed in association with BSC differentiation, and CTRP15 appears to be expressed in association with BSC proliferation. This study also confirms IL-6, IL-15, CTRP15, and BDNF proteins present in media collected from primary cultures of BSCs.

10.
Development ; 151(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38446206

ABSTRACT

Inhibitor of growth 4 and 5 (ING4, ING5) are structurally similar chromatin-binding proteins in the KAT6A, KAT6B and KAT7 histone acetyltransferase protein complexes. Heterozygous mutations in the KAT6A or KAT6B gene cause human disorders with cardiac defects, but the contribution of their chromatin-adaptor proteins to development is unknown. We found that Ing5-/- mice had isolated cardiac ventricular septal defects. Ing4-/-Ing5-/- embryos failed to undergo chorioallantoic fusion and arrested in development at embryonic day 8.5, displaying loss of histone H3 lysine 14 acetylation, reduction in H3 lysine 23 acetylation levels and reduced developmental gene expression. Embryonic day 12.5 Ing4+/-Ing5-/- hearts showed a paucity of epicardial cells and epicardium-derived cells, failure of myocardium compaction, and coronary vasculature defects, accompanied by reduced expression of epicardium genes. Cell adhesion gene expression and proepicardium outgrowth were defective in the ING4- and ING5-deficient state. Our findings suggest that ING4 and ING5 are essential for heart development and promote epicardium and epicardium-derived cell fates and imply mutation of the human ING5 gene as a possible cause of isolated ventricular septal defects.


Subject(s)
Carrier Proteins , Heart Septal Defects, Ventricular , Lysine , Humans , Animals , Mice , Cell Lineage , Histones , Acetylation , Chromatin , Transcription Factors , Tumor Suppressor Proteins , Homeodomain Proteins/genetics , Cell Cycle Proteins , Histone Acetyltransferases
11.
Cell Rep ; 43(2): 113754, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38354086

ABSTRACT

Blood-borne pathogens can cause systemic inflammatory response syndrome (SIRS) followed by protracted, potentially lethal immunosuppression. The mechanisms responsible for impaired immunity post-SIRS remain unclear. We show that SIRS triggered by pathogen mimics or malaria infection leads to functional paralysis of conventional dendritic cells (cDCs). Paralysis affects several generations of cDCs and impairs immunity for 3-4 weeks. Paralyzed cDCs display distinct transcriptomic and phenotypic signatures and show impaired capacity to capture and present antigens in vivo. They also display altered cytokine production patterns upon stimulation. The paralysis program is not initiated in the bone marrow but during final cDC differentiation in peripheral tissues under the influence of local secondary signals that persist after resolution of SIRS. Vaccination with monoclonal antibodies that target cDC receptors or blockade of transforming growth factor ß partially overcomes paralysis and immunosuppression. This work provides insights into the mechanisms of paralysis and describes strategies to restore immunocompetence post-SIRS.


Subject(s)
Blood-Borne Pathogens , Immunosuppression Therapy , Humans , Dendritic Cells , Paralysis , Systemic Inflammatory Response Syndrome
12.
Nat Cell Biol ; 26(1): 138-152, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38216737

ABSTRACT

Inheritance of a BRCA2 pathogenic variant conveys a substantial life-time risk of breast cancer. Identification of the cell(s)-of-origin of BRCA2-mutant breast cancer and targetable perturbations that contribute to transformation remains an unmet need for these individuals who frequently undergo prophylactic mastectomy. Using preneoplastic specimens from age-matched, premenopausal females, here we show broad dysregulation across the luminal compartment in BRCA2mut/+ tissue, including expansion of aberrant ERBB3lo luminal progenitor and mature cells, and the presence of atypical oestrogen receptor (ER)-positive lesions. Transcriptional profiling and functional assays revealed perturbed proteostasis and translation in ERBB3lo progenitors in BRCA2mut/+ breast tissue, independent of ageing. Similar molecular perturbations marked tumours bearing BRCA2-truncating mutations. ERBB3lo progenitors could generate both ER+ and ER- cells, potentially serving as cells-of-origin for ER-positive or triple-negative cancers. Short-term treatment with an mTORC1 inhibitor substantially curtailed tumorigenesis in a preclinical model of BRCA2-deficient breast cancer, thus uncovering a potential prevention strategy for BRCA2 mutation carriers.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/prevention & control , Mastectomy , Mutation , BRCA2 Protein/genetics , Carcinogenesis , Cell Transformation, Neoplastic , BRCA1 Protein/genetics
13.
Nat Immunol ; 25(2): 330-342, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172260

ABSTRACT

Antibody-secreting plasma cells (PCs) are generated in secondary lymphoid organs but are reported to reside in an emerging range of anatomical sites. Analysis of the transcriptome of different tissue-resident (Tr)PC populations revealed that they each have their own transcriptional signature indicative of functional adaptation to the host tissue environment. In contrast to expectation, all TrPCs were extremely long-lived, regardless of their organ of residence, with longevity influenced by intrinsic factors like the immunoglobulin isotype. Analysis at single-cell resolution revealed that the bone marrow is unique in housing a compendium of PCs generated all over the body that retain aspects of the transcriptional program indicative of their tissue of origin. This study reveals that extreme longevity is an intrinsic property of TrPCs whose transcriptome is imprinted by signals received both at the site of induction and within the tissue of residence.


Subject(s)
Bone Marrow , Plasma Cells , Bone Marrow Cells
14.
Nucleic Acids Res ; 52(3): e13, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38059347

ABSTRACT

Differential expression analysis of RNA-seq is one of the most commonly performed bioinformatics analyses. Transcript-level quantifications are inherently more uncertain than gene-level read counts because of ambiguous assignment of sequence reads to transcripts. While sequence reads can usually be assigned unambiguously to a gene, reads are very often compatible with multiple transcripts for that gene, particularly for genes with many isoforms. Software tools designed for gene-level differential expression do not perform optimally on transcript counts because the read-to-transcript ambiguity (RTA) disrupts the mean-variance relationship normally observed for gene level RNA-seq data and interferes with the efficiency of the empirical Bayes dispersion estimation procedures. The pseudoaligners kallisto and Salmon provide bootstrap samples from which quantification uncertainty can be assessed. We show that the overdispersion arising from RTA can be elegantly estimated by fitting a quasi-Poisson model to the bootstrap counts for each transcript. The technical overdispersion arising from RTA can then be divided out of the transcript counts, leading to scaled counts that can be input for analysis by established gene-level software tools with full statistical efficiency. Comprehensive simulations and test data show that an edgeR analysis of the scaled counts is more powerful and efficient than previous differential transcript expression pipelines while providing correct control of the false discovery rate. Simulations explore a wide range of scenarios including the effects of paired vs single-end reads, different read lengths and different numbers of replicates.


Subject(s)
Gene Expression Profiling , Software , Gene Expression Profiling/methods , Bayes Theorem , Uncertainty , Sequence Analysis, RNA/methods
15.
JACC Cardiovasc Imaging ; 17(5): 471-485, 2024 May.
Article in English | MEDLINE | ID: mdl-38099912

ABSTRACT

BACKGROUND: The CLASP IID randomized trial (Edwards PASCAL TrAnScatheter Valve RePair System Pivotal Clinical Trial) demonstrated the safety and effectiveness of the PASCAL system for mitral transcatheter edge-to-edge repair (M-TEER) in patients at prohibitive surgical risk with significant symptomatic degenerative mitral regurgitation (DMR). OBJECTIVES: This study describes the echocardiographic methods and outcomes from the CLASP IID trial and analyzes baseline variables associated with residual mitral regurgitation (MR) ≤1+. METHODS: An independent echocardiographic core laboratory assessed echocardiographic parameters based on American Society of Echocardiography guidelines focusing on MR mechanism, severity, and feasibility of M-TEER. Factors associated with residual MR ≤1+ were identified using logistic regression. RESULTS: In 180 randomized patients, baseline echocardiographic parameters were well matched between the PASCAL (n = 117) and MitraClip (n = 63) groups, with flail leaflets present in 79.2% of patients. Baseline MR was 4+ in 76.4% and 3+ in 23.6% of patients. All patients achieved MR ≤2+ at discharge. The proportion of patients with MR ≤1+ was similar in both groups at discharge but diverged at 6 months, favoring PASCAL (83.7% vs 71.2%). Overall, patients with a smaller flail gap were significantly more likely to achieve MR ≤1+ at discharge (adjusted OR: 0.70; 95% CI: 0.50-0.99). Patients treated with PASCAL and those with a smaller flail gap were significantly more likely to sustain MR ≤1+ to 6 months (adjusted OR: 2.72 and 0.76; 95% CI: 1.08-6.89 and 0.60-0.98, respectively). CONCLUSIONS: The study used DMR-specific echocardiographic methodology for M-TEER reflecting current guidelines and advances in 3-dimensional echocardiography. Treatment with PASCAL and a smaller flail gap were significant factors in sustaining MR ≤1+ to 6 months. Results demonstrate that MR ≤1+ is an achievable benchmark for successful M-TEER. (Edwards PASCAL TrAnScatheter Valve RePair System Pivotal Clinical Trial [CLASP IID]; NCT03706833).


Subject(s)
Cardiac Catheterization , Heart Valve Prosthesis Implantation , Mitral Valve Insufficiency , Mitral Valve , Predictive Value of Tests , Recovery of Function , Severity of Illness Index , Humans , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/surgery , Mitral Valve Insufficiency/physiopathology , Male , Female , Mitral Valve/diagnostic imaging , Mitral Valve/surgery , Mitral Valve/physiopathology , Treatment Outcome , Cardiac Catheterization/instrumentation , Cardiac Catheterization/adverse effects , Aged , Risk Factors , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/adverse effects , Time Factors , Aged, 80 and over , Heart Valve Prosthesis , Feasibility Studies , Risk Assessment , Prosthesis Design , Echocardiography, Three-Dimensional
16.
F1000Res ; 12: 684, 2023.
Article in English | MEDLINE | ID: mdl-37994351

ABSTRACT

Background: Single-cell RNA sequencing (scRNA-seq) technologies have rapidly developed in recent years. The droplet-based single cell platforms enable the profiling of gene expression in tens of thousands of cells per sample. The goal of a typical scRNA-seq analysis is to identify different cell subpopulations and their respective marker genes. Additionally, trajectory analysis can be used to infer the developmental or differentiation trajectories of cells. Methods: This article demonstrates a comprehensive workflow for performing trajectory inference and time course analysis on a multi-sample single-cell RNA-seq experiment of the mouse mammary gland. The workflow uses open-source R software packages and covers all steps of the analysis pipeline, including quality control, doublet prediction, normalization, integration, dimension reduction, cell clustering, trajectory inference, and pseudo-bulk time course analysis. Sample integration and cell clustering follows the Seurat pipeline while the trajectory inference is conducted using the monocle3 package. The pseudo-bulk time course analysis uses the quasi-likelihood framework of edgeR. Results: Cells are ordered and positioned along a pseudotime trajectory that represented a biological process of cell differentiation and development. The study successfully identified genes that were significantly associated with pseudotime in the mouse mammary gland. Conclusions: The demonstrated workflow provides a valuable resource for researchers conducting scRNA-seq analysis using open-source software packages. The study successfully demonstrated the usefulness of trajectory analysis for understanding the developmental or differentiation trajectories of cells. This analysis can be applied to various biological processes such as cell development or disease progression, and can help identify potential biomarkers or therapeutic targets.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Animals , Mice , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software , Gene Expression
17.
Epilepsy Behav ; 149: 109519, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995537

ABSTRACT

BACKGROUND: It has long been recognized that epilepsy has a substantial economic impact on populations including health care costs and employment impact. There is a paucity of data on the individual and household impact of epilepsy on financial income. METHODS: Canadian data on households containing persons with epilepsy were derived from the National Population Health Survey of Neurological Conditions within the Canadian Community Health Survey (CCHS), a Canadian population-based cross-sectional survey that collects information related to health status (2010-2011). We determined the number of households in Canada reporting at least one member with epilepsy. We examined the difference in reported household income between households reporting at least one member with epilepsy with those not reporting any members with epilepsy. We then developed a model of reported household income within Canada in order to adjust the estimated impact on household income of having at least one member with epilepsy. RESULTS: In 2010-2011, 122,911 respondents to the CCHS identified 1,254 households containing individuals with epilepsy, representing âˆ¼ 594,200 households in Canada (95 % CI: 534,900-650,500). These respondents reported that household income for households with members with epilepsy was reduced by CDN$ 14,000 when compared to the mean reported household income of CDN$ 83,000, (p < 0.001). In a model of income, the adjusted impact of a household member with epilepsy was CDN$ 14,700 (95 % CI: 10,000-19,500). CONCLUSION: The financial impact on Canadian households of persons with epilepsy is profound. While we can only speculate on the rationale driving this, the differential in average household income in households living with an individual with epilepsy is clear. This places an additional financial burden on persons with epilepsy (PWE) who may already face substantial medication, health care and caregiver costs.


Subject(s)
Epilepsy , Family Characteristics , Humans , Canada/epidemiology , Cross-Sectional Studies , Income , Health Care Costs , Surveys and Questionnaires , Epilepsy/epidemiology
18.
Front Cell Dev Biol ; 11: 1270542, 2023.
Article in English | MEDLINE | ID: mdl-38020882

ABSTRACT

Cell cycle checkpoint kinases serve as important therapeutic targets for various cancers. When they are inhibited by small molecules, checkpoint abrogation can induce cell death or further sensitize cancer cells to other genotoxic therapies. Particularly aberrant Cdk1 activation at the G2/M checkpoint by kinase inhibitors causing unscheduled mitotic entry and mitotic arrest was found to lead to DNA damage and cell death selectively in cancer cells. Promising drugs inhibiting kinases like Wee1 (Adavosertib), Wee1+Myt1 (PD166285), ATR (AZD6738) and Chk1 (UCN-01) have been developed, but clinical data has shown variable efficacy for them with poorly understood mechanisms of resistance. Our lab recently identified Myt1 as a predictive biomarker of acquired resistance to the Wee1 kinase inhibitor, Adavosertib. Here, we investigate the role of Myt1 overexpression in promoting resistance to inhibitors (PD166285, UCN-01 and AZD6738) of other kinases regulating cell cycle progression. We demonstrate that Myt1 confers resistance by compensating Cdk1 inhibition in the presence of these different kinase inhibitors. Myt1 overexpression leads to reduced premature mitotic entry and decreased length of mitosis eventually leading to increased survival rates in Adavosertib treated cells. Elevated Myt1 levels also conferred resistance to inhibitors of ATR or Chk1 inhibitor. Our data supports that Myt1 overexpression is a common mechanism by which cancer cells can acquire resistance to a variety of drugs entering the clinic that aim to induce mitotic catastrophe by abrogating the G2/M checkpoint.

19.
Cell Genom ; 3(11): 100424, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38020976

ABSTRACT

Although lineage-specific genes have been identified in the mammary gland, little is known about the contribution of the 3D genome organization to gene regulation in the epithelium. Here, we describe the chromatin landscape of the three major epithelial subsets through integration of long- and short-range chromatin interactions, accessibility, histone modifications, and gene expression. While basal genes display exquisite lineage specificity via distal enhancers, luminal-specific genes show widespread promoter priming in basal cells. Cell specificity in luminal progenitors is largely mediated through extensive chromatin interactions with super-enhancers in gene-body regions in addition to interactions with polycomb silencer elements. Moreover, lineage-specific transcription factors appear to be controlled through cell-specific chromatin interactivity. Finally, chromatin accessibility rather than interactivity emerged as a defining feature of the activation of quiescent basal stem cells. This work provides a comprehensive resource for understanding the role of higher-order chromatin interactions in cell-fate specification and differentiation in the adult mouse mammary gland.

20.
Nat Methods ; 20(11): 1810-1821, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783886

ABSTRACT

The lack of benchmark data sets with inbuilt ground-truth makes it challenging to compare the performance of existing long-read isoform detection and differential expression analysis workflows. Here, we present a benchmark experiment using two human lung adenocarcinoma cell lines that were each profiled in triplicate together with synthetic, spliced, spike-in RNAs (sequins). Samples were deeply sequenced on both Illumina short-read and Oxford Nanopore Technologies long-read platforms. Alongside the ground-truth available via the sequins, we created in silico mixture samples to allow performance assessment in the absence of true positives or true negatives. Our results show that StringTie2 and bambu outperformed other tools from the six isoform detection tools tested, DESeq2, edgeR and limma-voom were best among the five differential transcript expression tools tested and there was no clear front-runner for performing differential transcript usage analysis between the five tools compared, which suggests further methods development is needed for this application.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Benchmarking/methods , RNA , Protein Isoforms
SELECTION OF CITATIONS
SEARCH DETAIL
...