Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(11): e0276787, 2022.
Article in English | MEDLINE | ID: mdl-36327300

ABSTRACT

The three-dimensional structure of the synthetic lung Surfactant Protein B Peptide Super Mini-B was determined using an integrative experimental approach, including mass spectrometry and isotope enhanced Fourier-transform infrared (FTIR) spectroscopy. Mass spectral analysis of the peptide, oxidized by solvent assisted region-specific disulfide formation, confirmed that the correct folding and disulfide pairing could be facilitated using two different oxidative structure-promoting solvent systems. Residue specific analysis by isotope enhanced FTIR indicated that the N-terminal and C-terminal domains have well defined α-helical amino acid sequences. Using these experimentally derived measures of distance constraints and disulfide connectivity, the ensemble was further refined with molecular dynamics to provide a medium resolution, residue-specific structure for the peptide construct in a simulated synthetic lung surfactant lipid multilayer environment. The disulfide connectivity combined with the α-helical elements stabilize the peptide conformationally to form a helical hairpin structure that resembles critical elements of the Saposin protein fold of the predicted full-length Surfactant Protein B structure.


Subject(s)
Pulmonary Surfactants , Saposins , Protein Structure, Secondary , Saposins/metabolism , Pulmonary Surfactants/metabolism , Peptides , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents , Disulfides/chemistry , Lung/metabolism , Solvents
2.
BMC Pulm Med ; 21(1): 330, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686153

ABSTRACT

BACKGROUND: Optimal functionality of synthetic lung surfactant for treatment of respiratory distress syndrome in preterm infants largely depends on the quality and quantity of the surfactant protein B (SP-B) peptide mimic and the lipid mixture. B-YL peptide is a 41-residue sulfur-free SP-B mimic with its cysteine and methionine residues replaced by tyrosine and leucine, respectively, to enhance its oxidation resistance. AIM: Testing the structural and functional stability of the B-YL peptide in synthetic surfactant lipids after long-term storage. METHODS: The structural and functional properties of B-YL peptide in surfactant lipids were studied using three production runs of B-YL peptides in synthetic surfactant lipids. Each run was held at 5 °C ambient temperature for three years and analyzed with structural and computational techniques, i.e., MALDI-TOF mass spectrometry, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), secondary homology modeling of a preliminary B-YL structure, and tertiary Molecular Dynamic simulations of B-YL in surfactant lipids, and with functional methods, i.e., captive bubble surfactometry (CBS) and retesting in vivo surface activity in surfactant-deficient young adult rabbits. RESULTS: MALDI-TOF mass spectrometry showed no degradation of the B-YL peptide as a function of stored time. ATR-FTIR studies demonstrated that the B-YL peptide still assumed stable alpha-helical conformations in synthetic surfactant lipids. These structural findings correlated with excellent in vitro surface activity during both quasi-static and dynamic cycling on CBS after three years of cold storage and in vivo surface activity of the aged formulations with improvements in oxygenation and dynamic lung compliance approaching those of the positive control surfactant Curosurf®. CONCLUSIONS: The structure of the B-YL peptide and the in vitro and in vivo functions of the B-YL surfactant were each maintained after three years of refrigeration storage.


Subject(s)
Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactants/chemistry , Surface-Active Agents/chemistry , Animals , Drug Stability , Lipid Metabolism , Pulmonary Surfactant-Associated Protein B/metabolism , Pulmonary Surfactants/metabolism , Rabbits , Surface-Active Agents/metabolism
3.
Gates Open Res ; 3: 6, 2019.
Article in English | MEDLINE | ID: mdl-31131369

ABSTRACT

Background: The development of synthetic lung surfactant for preterm infants has focused on peptide analogues of native surfactant proteins B and C (SP-B and SP-C). Non-invasive respiratory support with nasal continuous positive airway pressure (nCPAP) may benefit from synthetic surfactant for aerosol delivery. Methods: A total of three dry powder (DP) surfactants, consisting of phospholipids and the SP-B analogue Super Mini-B (SMB), and one negative control DP surfactant without SMB, were produced with the Acorda Therapeutics ARCUS® Pulmonary Dry Powder Technology. Structure of the DP surfactants was compared with FTIR spectroscopy, in vitro surface activity with captive bubble surfactometry, and in vivo activity in surfactant-deficient adult rabbits and preterm lambs. In the animal experiments, intratracheal (IT) aerosol delivery was compared with surfactant aerosolization during nCPAP support. Surfactant dosage was 100 mg/kg of lipids and aerosolization was performed using a low flow inhaler. Results: FTIR spectra of the three DP surfactants each showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to that previously noted for surface-active SMB in other lipids. The DP surfactants with SMB demonstrated in vitro surface activity <1 mN/m. Oxygenation and lung function increased quickly after IT aerosolization of DP surfactant in both surfactant-deficient rabbits and preterm lambs, similar to improvements seen with clinical surfactant. The response to nCPAP aerosol delivery of DP surfactant was about 50% of IT aerosol delivery, but could be boosted with a second dose in the preterm lambs. Conclusions: Aerosol delivery of DP synthetic surfactant during non-invasive respiratory support with nCPAP significantly improved oxygenation and lung function in surfactant-deficient animals and this response could be enhanced by giving a second dose. Aerosol delivery of DP synthetic lung surfactant has potential for clinical applications.

5.
Gates Open Res ; 2: 13, 2018.
Article in English | MEDLINE | ID: mdl-30234192

ABSTRACT

Background: Animal-derived surfactants containing surfactant proteins B (SP-B) and C (SP-C) are used to treat respiratory distress syndrome (RDS) in preterm infants. SP-B (79 residues) plays a pivotal role in lung function and the design of synthetic lung surfactant. Super Mini-B (SMB), a 41-residue peptide based on the N- and C-domains of SP-B covalently joined with a turn and two disulfides, folds as an α-helix hairpin mimicking the properties of these domains in SP-B. Here, we studied 'B-YL', a 41-residue SMB variant that has its four cysteine and two methionine residues replaced by tyrosine and leucine, respectively, to test whether these hydrophobic substitutions produce a surface-active, α-helix hairpin. Methods: Structure and function of B-YL and SMB in surfactant lipids were compared with CD and FTIR spectroscopy, and surface activity with captive bubble surfactometry and in lavaged, surfactant-deficient adult rabbits. Results: CD and FTIR spectroscopy of B-YL in surfactant lipids showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to SMB in lipids. B-YL in surfactant lipids demonstrated excellent in vitro surface activity and good oxygenation and dynamic compliance in lavaged, surfactant-deficient adult rabbits, suggesting that the four tyrosine substitutions are an effective replacement for the disulfide-reinforced helix-turn of SMB. Here, the B-YL fold may be stabilized by a core of clustered tyrosines linking the N- and C-helices through non-covalent interactions involving aromatic rings. Conclusions: 'Sulfur-free' B-YL forms an amphipathic helix-hairpin in surfactant liposomes with high surface activity and is functionally similar to SMB and native SP-B. The removal of the cysteines makes B-YL more feasible to scale up production for clinical application. B-YL's possible resistance against free oxygen radical damage to methionines by substitutions with leucine provides an extra edge over SMB in the treatment of respiratory failure in preterm infants with RDS.

6.
Biochim Biophys Acta ; 1858(12): 3113-3119, 2016 12.
Article in English | MEDLINE | ID: mdl-27664499

ABSTRACT

Surfactant protein B (SP-B; 79 residues) is a member of the saposin superfamily and plays a pivotal role in lung function. The N- and C-terminal regions of SP-B, cross-linked by two disulfides, were theoretically predicted to fold as charged amphipathic helices, suggesting participation in surfactant activities. Previous studies with oxidized Super Mini-B (SMB), a construct based on the N- and C-regions of SP-B (i.e., residues 1-25 and 63-78) joined with a designer turn (-PKGG-) and two disulfides, indicated that freshly prepared SMB in lipids folded as a surface active, α-helix-hairpin. Because other peptides modeled on α-helical SP domains lost helicity and surfactant activity on storage, experiments were here performed on oxidized SMB in surfactant liposomes stored at ~2-8°C for ≤5.5years. Captive bubble surfactometry confirmed low minimum surface tensions for fresh and stored SMB preparations. FTIR spectroscopy of fresh and stored SMB formulations showed secondary structures compatible with the peptide folding as α-helix-hairpin. A homology (I-TASSER) model of oxidized SMB demonstrated a globular protein, exhibiting a core of hydrophobic residues and a surface of polar residues. Since mass spectroscopy indicated that the disulfides were maintained on storage, the stability of SMB may be partly due to the disulfides bringing the N- and C-α-helices closer. Mass spectroscopy of stored SMB preparations showed some methionine oxidation, and also partial deacylation of surfactant phospholipids to form lyso-derivatives. However, the stable conformation and activity of stored SMB surfactant suggest that the active helix-hairpin resists these chemical changes which otherwise may lead to surfactant inhibition.


Subject(s)
Liposomes/chemistry , Pulmonary Surfactant-Associated Protein B/chemistry , Disulfides/chemistry , Lipids/analysis , Molecular Weight , Protein Stability , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared
7.
Biomed Hub ; 1(3)2016.
Article in English | MEDLINE | ID: mdl-28503550

ABSTRACT

Surfactant protein (SP)-B is a 79-residue polypeptide crucial for the biophysical and physiological function of endogenous lung surfactant. SP-B is a member of the Saposin or Saposin-like proteins (SAPLIP) family of proteins that share an overall three-dimensional folding pattern based on secondary structures and disulfide connectivity and exhibit a wide diversity of biological functions. Here we review the synthesis, molecular biophysics and activity of synthetic analogs of Saposin proteins designed to mimic those interactions of the parent proteins with lipids that enhance interfacial activity. Saposin proteins generally interact with target lipids as either monomers or multimers via well-defined amphipathic helices, flexible hinge domains, and insertion sequences. Based on the known 3D-structural motif for the Saposin family, we show how bioengineering techniques may be used to develop minimal peptide constructs that maintain desirable structural properties and activities in biomedical applications. One important application is the molecular design, synthesis and activity of Saposin mimics based on the SP-B structure. Synthetic lung surfactants containing active SP-B analogs may be potentially useful in treating diseases of surfactant deficiency or dysfunction including the neonatal respiratory distress syndrome and acute lung injury/acute respiratory distress syndrome.

8.
PeerJ ; 2: e485, 2014.
Article in English | MEDLINE | ID: mdl-25083348

ABSTRACT

Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as 'helical adjuvants' to maintain activity by overriding the ß-sheet propensities of the native sequences. Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges ("ion-locks") promote surface activity by mimicking the α-helix and membrane topography of native SP-C. Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines). Ion-lock SP-C molecules were prepared by incorporating single or double Glu(-)-Lys(+) into the parent SP-C's. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR) spectroscopy and PASTA, an algorithm that predicts ß-sheet propensities based on the energies of the various ß-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D) exchange FTIR, and also Membrane Protein Explorer (MPEx) hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency. Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel ß-sheet aggregates, with FTIR spectroscopy confirming high parallel ß-sheet with 'amyloid-like' properties. The enhanced ß-sheet properties for SP-Css and SP-Cff are likely responsible for their low surfactant activities in the in vitro and in vivo assays. Although standard (12)C-FTIR study showed that the α-helicity of these SP-C sequences in lipids was uniformly increased with Glu(-)-Lys(+) insertions, elevated surfactant activity was only selectively observed. Additional results from oriented and H/D exchange FTIR experiments indicated that the high surfactant activities depend on the SP-C ion-locks recapitulating both the α-helicity and the membrane topography of native SP-C. SP-Css ion-lock 1, an SP-Css with a salt-bridge for a Glu(-)-Lys(+) ion-pair predicted from MPEx hydropathy calculations, demonstrated enhanced surfactant activity and a transmembrane helix simulating those of native SP-C. Conclusion. Highly active SP-C mimics were developed that replace the palmitoyls of SP-C with intrapeptide salt-bridges and represent a new class of synthetic surfactants with therapeutic interest.

9.
PeerJ ; 2: e393, 2014.
Article in English | MEDLINE | ID: mdl-24883253

ABSTRACT

Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions. Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical) ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C) mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS. Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB), a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight), the clinical surfactant Infasurf(®), a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS) assays. Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary-alveolar protein leakage and surfactant dysfunction after HCl instillation than following lung lavage. At the end of the duration of the experiments, synthetic surfactants provided more clinical stability in ALI/ARDS than Infasurf, and the protein content of bronchoalveolar lavage fluid was lowest for the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA. Conclusion. Advanced synthetic surfactant with robust SP-B and SP-C mimics is better equipped to tackle surfactant inactivation in chemical ALI than synthetic surfactant with only a single surfactant peptide or animal-derived surfactant.

10.
Biochim Biophys Acta ; 1818(5): 1165-72, 2012 May.
Article in English | MEDLINE | ID: mdl-22252270

ABSTRACT

SP-B(CTERM) is a cationic amphipathic helical peptide and functional fragment composed of residues 63 to 78 of surfactant protein B (SP-B). Static oriented and magic angle spinning solid state NMR, along with molecular dynamics simulation was used to investigate its structure, orientation, and depth in lipid bilayers of several compositions, namely POPC, DPPC, DPPC/POPC/POPG, and bovine lung surfactant extract (BLES). In all lipid environments the peptide was oriented parallel to the membrane surface. While maintaining this approximately planar orientation, SP-B(CTERM) exhibited a flexible topology controlled by subtle variations in lipid composition. SP-B(CTERM)-induced lipid realignment and/or conformational changes at the level of the head group were observed using (31)P solid-state NMR spectroscopy. Measurements of the depth of SP-B(CTERM) indicated the peptide center positions ~8Å more deeply than the phosphate headgroups, a topology that may allow the peptide to promote functional lipid structures without causing micellization upon compression.


Subject(s)
Lipid Bilayers/chemistry , Lung/chemistry , Pulmonary Surfactant-Associated Protein B/chemistry , Animals , Cattle , Lipid Bilayers/metabolism , Lung/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Pulmonary Surfactant-Associated Protein B/metabolism , Structure-Activity Relationship
11.
Medchemcomm ; 2(12): 1167-1173, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22530092

ABSTRACT

This paper reports the chemical synthesis and purification of a novel phospholipase-resistant C16:0, C16:1 diether phosphonoglycerol with structural analogy to ester-linked anionic phosphatidylglycerol (PG) in endogenous pulmonary surfactant. This diether phosphonoglycerol (PG 1) is studied for phospholipase A(2) (PLA(2)) resistance and for surface activity in synthetic exogenous surfactants combined with Super Mini-B (S-MB) peptide and DEPN-8, a previously-reported diether phosphonolipid analog of dipalmitoyl phosphatidylcholine (DPPC, the major zwitterionic phospholipid in native lung surfactant). Activity experiments measured both adsorption and dynamic surface tension lowering due to the known importance of these surface behaviors in lung surfactant function in vivo. Synthetic surfactants containing 9 : 1 DEPN-8:PG 1 + 3% S-MB were resistant to degradation by PLA(2) in chromatographic studies, while calf lung surfactant extract (CLSE, the substance of the bovine clinical surfactant Infasurf®) was significantly degraded by PLA(2). The 9 : 1 DEPN-8:PG 1 + 3% S-MB mixture also had small but consistent increases in both adsorption and dynamic surface tension lowering ability compared to DEPN-8 + 3% S-MB. Consistent with these surface activity increases, molecular dynamics simulations using Protein Modeller, GROMACS force-field, and PyMOL showed that bilayers containing DPPC and palmitoyl-oleoyl-PC (POPC) as surrogates of DEPN-8 and PG 1 were penetrated to a greater extent by S-MB peptide than bilayers of DPPC alone. These results suggest that PG 1 or related anionic phosphono-PG analogs may have functional utility in phospholipase-resistant synthetic surfactants targeting forms of acute pulmonary injury where endogenous surfactant becomes dysfunctional due to phospholipase activity in the innate inflammatory response.

12.
PLoS One ; 5(1): e8672, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-20084172

ABSTRACT

BACKGROUND: Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., approximately residues 8-25 and 63-78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1-7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. METHODOLOGY/RESULTS: FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary alpha-helix and secondary beta-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a "saposin-like" fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. CONCLUSION: Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.


Subject(s)
Pulmonary Surfactant-Associated Protein B/physiology , Amino Acid Sequence , Animals , Electrophoresis, Polyacrylamide Gel , Male , Models, Molecular , Molecular Sequence Data , Molecular Weight , Protein Conformation , Pulmonary Surfactant-Associated Protein B/chemistry , Rats , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Surface Plasmon Resonance
13.
Biochim Biophys Acta ; 1778(10): 2127-37, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18515070

ABSTRACT

Given their high alanine and glycine levels, plaque formation, alpha-helix to beta-sheet interconversion and fusogenicity, FP (i.e., the N-terminal fusion peptide of HIV-1 gp41; 23 residues) and amyloids were proposed as belonging to the same protein superfamily. Here, we further test whether FP may exhibit 'amyloid-like' characteristics, by contrasting its structural and functional properties with those of Abeta(26-42), a 17-residue peptide from the C-terminus of the amyloid-beta protein responsible for Alzheimer's. FTIR spectroscopy, electron microscopy, light scattering and predicted amyloid structure aggregation (PASTA) indicated that aqueous FP and Abeta(26-42) formed similar networked beta-sheet fibrils, although the FP fibril interactions were weaker. FP and Abeta(26-42) both lysed and aggregated human erythrocytes, with the hemolysis-onsets correlated with the conversion of alpha-helix to beta-sheet for each peptide in liposomes. Congo red (CR), a marker of amyloid plaques in situ, similarly inhibited either FP- or Abeta(26-42)-induced hemolysis, and surface plasmon resonance indicated that this may be due to direct CR-peptide binding. These findings suggest that membrane-bound beta-sheets of FP may contribute to the cytopathicity of HIV in vivo through an amyloid-type mechanism, and support the classification of HIV-1 FP as an 'amyloid homolog' (or 'amylog').


Subject(s)
Amyloid beta-Peptides , HIV Envelope Protein gp41 , Peptide Fragments , Protein Structure, Secondary , Amino Acid Sequence , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Coloring Agents/metabolism , Congo Red/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/metabolism , HIV-1/chemistry , Hemolysis , Humans , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Spectroscopy, Fourier Transform Infrared
14.
PLoS One ; 2(10): e1039, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-17940603

ABSTRACT

BACKGROUND: This study examines the surface activity and resistance to phospholipase degradation of a fully-synthetic lung surfactant containing a novel diether phosphonolipid (DEPN-8) plus a 34 amino acid peptide (Mini-B) related to native surfactant protein (SP)-B. Activity studies used adsorption, pulsating bubble, and captive bubble methods to assess a range of surface behaviors, supplemented by molecular studies using Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), and plasmon resonance. Calf lung surfactant extract (CLSE) was used as a positive control. RESULTS: DEPN-8+1.5% (by wt.) Mini-B was fully resistant to degradation by phospholipase A(2) (PLA(2)) in vitro, while CLSE was severely degraded by this enzyme. Mini-B interacted with DEPN-8 at the molecular level based on FTIR spectroscopy, and had significant plasmon resonance binding affinity for DEPN-8. DEPN-8+1.5% Mini-B had greatly increased adsorption compared to DEPN-8 alone, but did not fully equal the very high adsorption of CLSE. In pulsating bubble studies at a low phospholipid concentration of 0.5 mg/ml, DEPN-8+1.5% Mini-B and CLSE both reached minimum surface tensions <1 mN/m after 10 min of cycling. DEPN-8 (2.5 mg/ml)+1.5% Mini-B and CLSE (2.5 mg/ml) also reached minimum surface tensions <1 mN/m at 10 min of pulsation in the presence of serum albumin (3 mg/ml) on the pulsating bubble. In captive bubble studies, DEPN-8+1.5% Mini-B and CLSE both generated minimum surface tensions <1 mN/m on 10 successive cycles of compression/expansion at quasi-static and dynamic rates. CONCLUSIONS: These results show that DEPN-8 and 1.5% Mini-B form an interactive binary molecular mixture with very high surface activity and the ability to resist degradation by phospholipases in inflammatory lung injury. These characteristics are promising for the development of related fully-synthetic lipid/peptide exogenous surfactants for treating diseases of surfactant deficiency or dysfunction.


Subject(s)
Peptides/chemistry , Phospholipases/chemistry , Pulmonary Surfactants/chemistry , Animals , Cattle , Circular Dichroism , Inflammation , Lipids/chemistry , Lung/pathology , Phospholipases A2/chemistry , Phospholipids/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Plasmon Resonance , Surface Properties , Surface Tension
15.
Neonatology ; 91(4): 303-10, 2007.
Article in English | MEDLINE | ID: mdl-17575474

ABSTRACT

Lung surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). Its major function in the lung alveolus is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film enriched in surfactant lipids, hence preventing cellular collapse during respiration. Surfactant therapy using bovine or porcine lung surfactant extracts, which contain only polar lipids and native SP-B and SP-C, has dramatically improved the therapeutic outcomes of preterm infants with respiratory distress syndrome (RDS). One important goal of surfactant researchers is to replace animal-derived therapies with fully synthetic preparations based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. Here, we review recent research developments with peptide analogues of SP-B and SP-C, designed using either the known primary sequence and three-dimensional (3D) structure of the native proteins or, alternatively, the known 3D structures of closely homologous proteins. Such SP-B and SP-C mimics offer the possibility of studying the mechanisms of action of the respective native proteins, and may allow the design of optimized surfactant formulations for specific pulmonary diseases (e.g., acute lung injury (ALI) or acute respiratory distress syndrome (ARDS)). These synthetic surfactant preparations may also be a cost-saving therapeutic approach, with better quality control than may be obtained with animal-based treatments.


Subject(s)
Lung/physiology , Pulmonary Surfactant-Associated Proteins/chemistry , Pulmonary Surfactant-Associated Proteins/physiology , Pulmonary Surfactants/chemistry , Amino Acid Sequence , Disulfides/analysis , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation , Pulmonary Surfactant-Associated Protein A/chemistry , Pulmonary Surfactant-Associated Protein A/physiology , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein B/physiology , Pulmonary Surfactant-Associated Protein C/chemistry , Pulmonary Surfactant-Associated Protein C/physiology , Pulmonary Surfactant-Associated Protein D/physiology , Respiratory Mechanics , Sequence Alignment
16.
AIDS Res Hum Retroviruses ; 23(2): 224-42, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17331029

ABSTRACT

To study the membrane actions of various domains of HIV-1 glycoprotein 41,000 (gp41), synthetic peptides were prepared corresponding to the N-terminal fusion region (FP; gp41 residues 519-541), the nearby N-leucine zipper domain (N-peptides; DP-107; gp41 residues 560-597), the C-leucine zipper domain (C-peptides; DP-178; gp41 residues 645-680), and the viral envelope adjacent domain that partially overlaps DP-178 (Pre-TM; gp41 residues 671-690). With erythrocytes, FP, DP-107, and Pre-TM induced hemolysis and cell aggregation; the order for hemolytic activity was Pre-TM > FP > DP-107, but each was equally effective in aggregating cells at the highest peptide concentrations tested. DP-178 produced neither hemolysis nor aggregation, but efficiently reduced FP-, DP-107-, and Pre-TM-induced membrane actions. Fourier transform infrared spectroscopy indicated that the membrane perturbations of Pre-TM, as well as the ability of DP-178 to block membrane activities of other gp41 domains, are dependent on Pre-TM and DP-178 each maintaining helical conformations and tryptophans at residues 673, 677, and 679. These results suggest that the corresponding N-terminal fusion, N-leucine zipper, and viral membrane-adjacent regions of HIV-1 gp41 may similarly promote key membrane perturbations underlying the merging of the viral envelope with the cell surface. Further, the antiviral mechanism of exogenous DP-178 (clinically approved enfuvirtide) may be partially explained by its coordinate inhibition of the fusogenic actions of the FP, DP-107, and Pre-TM regions of gp41.


Subject(s)
Erythrocyte Aggregation/physiology , HIV Envelope Protein gp41/physiology , HIV-1/pathogenicity , Leucine Zippers/physiology , Membrane Fusion/physiology , Peptide Fragments/pharmacology , Circular Dichroism , Enfuvirtide , Erythrocyte Membrane/virology , HIV Envelope Protein gp41/biosynthesis , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/pharmacology , Hemolysis/physiology , Humans , Peptide Fragments/chemical synthesis , Spectroscopy, Fourier Transform Infrared
17.
Exp Lung Res ; 31(6): 563-79, 2005.
Article in English | MEDLINE | ID: mdl-16019988

ABSTRACT

Surfactant protein B (SP-B) is an essential component of pulmonary surfactant. Synthetic dimeric SP-B(1-25) (SP-B(1-25)), a peptide based on the N-terminal domain of human SP-B, efficiently mimics the functional properties of SP-B. The authors investigated the optimum lipid composition for SP-B(1-25) by comparing the effects of natural lung lavage lipids (NLL), a synthetic equivalent of NLL (synthetic lavage lipids SLL), and a standard lipid mixture (TL) on the activities of SP-B(1-25). Surfactant preparations were formulated by mixing 2 mol% SP-B(1-25) in NNL, SLL, and TL. Calfactant, a calf lung lavage extract with SP-B and SP-C, was a positive control and lipids without peptide were negative controls. Minimum surface tension measured on a captive bubble surfactometer was similar for the three SP-B(1-25) surfactant preparations and calfactant. The effects on lung function were compared in ventilated, lavaged, surfactant-deficient rats. Oxygenation and lung volumes were consistently higher in rats treated with calfactant and SP-B(1-25) in NLL or SLL than in rats treated with SP-B(1-25) in TL. Fourier transform infrared spectra observed abnormal secondary conformations for SP-B(1-25) in TL as a possible cause for the reduced lung function. Lipid composition plays a crucial role in the in vitro and in vivo functions of SP-B(1-25) in surfactant preparations.


Subject(s)
Lung/drug effects , Pulmonary Surfactant-Associated Protein B/chemical synthesis , Pulmonary Surfactant-Associated Protein B/pharmacology , Amino Acid Sequence , Animals , Biological Products/pharmacology , Humans , Lipids/analysis , Lung Volume Measurements , Male , Molecular Sequence Data , Peptide Fragments/chemical synthesis , Peptide Fragments/pharmacology , Rats , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared
18.
Protein Sci ; 13(4): 1012-30, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15044732

ABSTRACT

The N-terminal domain of HIV-1 glycoprotein 41,000 (gp41) participates in viral fusion processes. Here, we use physical and computational methodologies to examine the secondary structure of a peptide based on the N terminus (FP; residues 1-23) in aqueous and detergent environments. (12)C-Fourier transform infrared (FTIR) spectroscopy indicated greater alpha-helix for FP in lipid-detergent sodium dodecyl sulfate (SDS) and aqueous phosphate-buffered saline (PBS) than in only PBS. (12)C-FTIR spectra also showed disordered FP conformations in these two environments, along with substantial beta-structure for FP alone in PBS. In experiments that map conformations to specific residues, isotope-enhanced FTIR spectroscopy was performed using FP peptides labeled with (13)C-carbonyl. (13)C-FTIR results on FP in SDS at low peptide loading indicated alpha-helix (residues 5 to 16) and disordered conformations (residues 1-4). Because earlier (13)C-FTIR analysis of FP in lipid bilayers demonstrated alpha-helix for residues 1-16 at low peptide loading, the FP structure in SDS micelles only approximates that found for FP with membranes. Molecular dynamics simulations of FP in an explicit SDS micelle indicate that the fraying of the first three to four residues may be due to the FP helix moving to one end of the micelle. In PBS alone, however, electron microscopy of FP showed large fibrils, while (13)C-FTIR spectra demonstrated antiparallel beta-sheet for FP (residues 1-12), analogous to that reported for amyloid peptides. Because FP and amyloid peptides each exhibit plaque formation, alpha-helix to beta-sheet interconversion, and membrane fusion activity, amyloid and N-terminal gp41 peptides may belong to the same superfamily of proteins.


Subject(s)
Detergents/chemistry , HIV Envelope Protein gp41/chemistry , HIV-1/chemistry , Lipids/chemistry , Peptides/chemistry , Protein Structure, Secondary , Amino Acid Sequence , Carbon Isotopes , Liposomes , Membrane Fusion , Micelles , Models, Molecular , Molecular Sequence Data , Sodium Dodecyl Sulfate/chemistry , Spectroscopy, Fourier Transform Infrared
19.
Exp Lung Res ; 28(8): 623-40, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12490037

ABSTRACT

Surfactant protein B (SP-B) is a constituent surfactant protein critical for normal lung function. Monomeric SP-B(1-25) (mSP-B(1-25)), a peptide based on the N-terminal domain of human SP-B, mixed in phospholipids partially restores lung function in surfactant-deficient animals. Because native SP-B is a homodimer, we synthesized and tested dimeric SP-B(1-25) (dSP-B(1-25)). Circular dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy indicated that the secondary conformation of SP-B(1-25) was not significantly perturbed by dimerization. The effects on lung function were compared to phospholipids and Survanta in models of neonatal respiratory distress syndrome (RDS) and acute RDS (ARDS). Preterm rabbits born at 27 days of gestation received 100 mg surfactant / kg at birth and were ventilated for 1 hour with a tidal volume of 10 mL / kg. Dynamic compliance was monitored every 15 minutes and postmortem pressure-volume curves were measured. Adult rats were lavaged to induce surfactant deficiency, treated with 100 mg surfactant / kg, and ventilated for 2 hours. Lung function was assessed using arterial blood gases and dynamic compliance every 15 minutes and postmortem pressure-volume curves. Lung volumes in both models and oxygenation in the lavaged rats were consistently higher in the dSP-B(1-25) than in the Survanta and mSP-B(1-25) surfactant groups. The data suggest that dSP-B(1-25) is more efficient in restoring lung function in neonatal RDS and ARDS than mSP-B(1-25) surfactant.


Subject(s)
Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein B/metabolism , Respiratory Distress Syndrome, Newborn/metabolism , Respiratory Distress Syndrome/metabolism , Acute Disease , Adult , Amino Acid Sequence , Animals , Animals, Newborn , Circular Dichroism , Dimerization , Disease Models, Animal , Humans , Infant, Newborn , Molecular Sequence Data , Protein Structure, Tertiary , Pulmonary Surfactant-Associated Protein B/analysis , Rabbits , Rats , Respiration, Artificial , Spectroscopy, Fourier Transform Infrared
20.
Biol Neonate ; 82(3): 181-7, 2002.
Article in English | MEDLINE | ID: mdl-12373069

ABSTRACT

The use of mammalian lung surfactant extracts has sharply reduced mortality and morbidity from respiratory distress syndrome in premature infants. Synthesis of surfactant protein B and C (SP-B and SP-C) analogues may lead the way to a synthetic surfactant preparation. Dimeric SP-B(1-25) (dSP-B(1-25)) is based on the N-terminal domain of human SP-B and SP-Cfc is a modified human SP-C in which a single phenylalanine is substituted for a palmitoylated cysteine residue in the N-terminal segment (Phe-4 > Cys-4 variant). We tested the effects of synthetic surfactants with 1 or 2% dSP-B(1-25) and 1% SP-Cfc on lung function in surfactant-deficient rats. Four experimental surfactant preparations were prepared by mixing 1% dSP-B(1-25), 2% dSP-B(1-25), 1% dSP-B(1-25) +1% SP-Cfc, and 2% dSP-B(1-25) +1% SP-Cfc with phospholipids (PL). PL and Survanta, a bovine lung extract, were controls. Groups of 8 rats were ventilated, lavaged until surfactant deficiency, and treated with 100 mg/kg surfactant. Arterial blood gas values and dynamic compliance were measured every 15 min and after 2 h of ventilation, the rats were killed and pressure-volume curves performed. Oxygenation improved quickly after instillation of surfactant with synthetic peptides and Survanta. Oxygenation and lung volumes were consistently higher in the 2% than in the 1% dSP-B(1-25) groups. Addition of 1% SP-Cfc to the synthetic surfactants further improved oxygenation and lung volume, but to a lesser extent than increasing the dSP-B(1-25) content from 1 to 2%. These data indicate that improvements in oxygenation and lung volume in lavaged rats are dependent on the concentration of dSP-B(1-25) in the surfactant preparation and that the presence of SP-Cfc has a relative minor effect on these parameters.


Subject(s)
Biological Products , Lung/physiopathology , Pulmonary Surfactant-Associated Protein B/analogs & derivatives , Pulmonary Surfactant-Associated Protein C/analogs & derivatives , Pulmonary Surfactant-Associated Proteins/deficiency , Pulmonary Surfactants/chemistry , Pulmonary Surfactants/therapeutic use , Amino Acid Sequence , Animals , Dimerization , Disease Models, Animal , Humans , Lung Diseases/drug therapy , Lung Diseases/physiopathology , Lung Volume Measurements , Male , Molecular Sequence Data , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Peptide Fragments/therapeutic use , Pulmonary Surfactant-Associated Protein B/administration & dosage , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein C/administration & dosage , Pulmonary Surfactant-Associated Protein C/chemistry , Pulmonary Surfactants/analysis , Rats , Rats, Sprague-Dawley , Respiration, Artificial , Therapeutic Irrigation
SELECTION OF CITATIONS
SEARCH DETAIL
...