Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 13(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38392292

ABSTRACT

Over recent decades, elasmobranchs (sharks, rays, and skates) have been increasingly recognized among the world's most threatened marine wildlife, leading to heightened scientific attention. However, batoids (rays and skates) are relatively understudied, especially in Large Ocean States of the Pacific. This synthesis compiles insights on batoid diversity and occurrence in Fiji's waters by integrating a literature review, participatory science programs such as the Great Fiji Shark Count (GFSC) Initiative, Projects Abroad Fiji (PA), Manta Project Fiji (MPF), and iNaturalist, along with environmental DNA. Nineteen batoid species from seven families were identified: 19 species from the literature, 12 from participatory science programs, and six from eDNA analysis. Notably, this study provides the first photographic evidence for the bentfin devil ray (Mobula thurstoni, Lloyd, 1908) in Fiji. GFSC data indicated the highest species diversity in the Western Division, with spotted eagle rays (Aetobatus ocellatus, Kuhl, 1823) and maskrays (Neotrygon sp.) being observed most. In-person interviews conducted by PA provided information on the occurrence of wedgefishes and potentially sawfishes. MPF records and iNaturalist uploads were dominated by reef manta rays (M. alfredi, Krefft, 1868), while the pink whipray (Pateobatis fai, Jordan and Seale, 1906) yielded the most DNA sequences. Overall, 68.4% of the species face an elevated extinction risk based on the International Union for the Conservation of Nature Red List criteria. Although caution is warranted with older literature-based records for the giant guitarfish (Glaucostegus typus, Anonymous [Bennett], 1830), giant stingaree (Plesiobatis daviesi, Wallace, 1967), and the lack of sawfish verification, this synthesis highlights the effectiveness of a combined methodological approach in establishing a reference point for the diversity and occurrence of this understudied taxon in Fiji.

2.
Eur J Neurosci ; 57(9): 1611-1624, 2023 05.
Article in English | MEDLINE | ID: mdl-36949610

ABSTRACT

Photobiomodulation (PBM)-the irradiation of tissue with low-intensity light-mitigates neuropathology in rodent models of Parkinson's disease (PD) when targeted at the head ('transcranial PBM'). In humans, however, attenuation of light energy by the scalp and skull necessitates a different approach. We have reported that targeting PBM at the body also protects the brain by a mechanism that spreads from the irradiated tissue ('remote PBM'), although the optimal peripheral tissue target for remote PBM is currently unclear. This study compared the neuroprotective efficacy of remote PBM targeting the abdomen or leg with transcranial PBM, in mouse and non-human primate models of PD. In a pilot study, the neurotoxin MPTP was used to induce PD in non-human primates; PBM (670 nm, 50 mW/cm2 , 6 min/day) of the abdomen (n = 1) was associated with fewer clinical signs and more surviving midbrain dopaminergic cells relative to MPTP-injected non-human primates not treated with PBM. Validation studies in MPTP-injected mice (n = 10 per group) revealed a significant rescue of midbrain dopaminergic cells in mice receiving PBM to the abdomen (~80%, p < .0001) or legs (~80%, p < .0001), with comparable rescue of axonal terminals in the striatum. Strikingly, this degree of neuroprotection was at least as, if not more, pronounced than that achieved with transcranial PBM. These findings confirm that remote PBM provides neuroprotection against MPTP-induced destruction of the key circuitry underlying PD, with both the abdomen and legs serving as viable remote targets. This should provide the impetus for a comprehensive investigation of remote PBM-induced neuroprotection in other models of PD and, ultimately, human patients.


Subject(s)
Neuroprotection , Parkinson Disease , Humans , Mice , Animals , Leg , Pilot Projects , Parkinson Disease/therapy , Abdomen
3.
PeerJ ; 10: e13883, 2022.
Article in English | MEDLINE | ID: mdl-36097525

ABSTRACT

Until the revision of the genus Manta in 2009, when a second manta species (Manta alfredi) was resurrected based on morphological and meristic data, all available records in Fijian literature were recorded as Manta birostris. Subsequently, documented sightings were recorded as M. alfredi. Another reclassification of the genus Manta was undertaken in 2018 when both manta ray species (Manta alfredi, Manta birostris) were moved to Mobula based on phylogenetic analysis. Here, we present the first unequivocal evidence of oceanic manta ray (Mobula birostris) occurrence in Fijian waters. In November 2018, two individuals were sighted foraging in Laucala Bay, a large lagoon adjacent to Suva, the capital city of Fiji. Subsequently, three more individuals were sighted in December 2018, two individuals in July 2020, at least six individuals were observed in November 2021, and eight individuals in May/June 2022, all foraging in the same geographical area. Unique ventral identification patterns could be obtained for nine individuals, and all nine individuals have been re-sighted since first identification, with one individual being documented in 2018, 2020, 2021 and 2022. Two additional individuals were recorded in the Yasawa Island Group in the west of Fiji while passing through and foraging in a channel between Drawaqa and Naviti Island in April and September 2020. We provide photographic identification of ten M. birostris individuals from two sites and discuss our findings in the context of local environmental parameters and other recorded sightings in the South Pacific region. In light of the global extinction risk of M. birostris and the recent reclassification from Vulnerable to Endangered on the Red List of Threatened Species, the expansion of their known distribution range to Fijian waters and the recurrence of individuals over consecutive years in the same location adds valuable information for the development of effective and data-driven conservation strategies.


Subject(s)
Elasmobranchii , Skates, Fish , Humans , Animals , Phylogeny , Islands , Fiji
4.
J Alzheimers Dis ; 83(4): 1399-1413, 2021.
Article in English | MEDLINE | ID: mdl-33843683

ABSTRACT

In recent times, photobiomodulation has been shown to be beneficial in animal models of Parkinson's disease, improving locomotive behavior and being neuroprotective. Early observations in people with Parkinson's disease have been positive also, with improvements in the non-motor symptoms of the disease being evident most consistently. Although the precise mechanisms behind these improvements are not clear, two have been proposed: direct stimulation, where light reaches and acts directly on the distressed neurons, and remote stimulation, where light influences cells and/or molecules that provide systemic protection, thereby acting indirectly on distressed neurons. In relation to Parkinson's disease, given that the major zone of pathology lies deep in the brain and that light from an extracranial or external photobiomodulation device would not reach these vulnerable regions, stimulating the distressed neurons directly would require intracranial delivery of light using a device implanted close to the vulnerable regions. For indirect systemic stimulation, photobiomodulation could be applied to either the head and scalp, using a transcranial helmet, or to a more remote body part (e.g., abdomen, leg). In this review, we discuss the evidence for both the direct and indirect neuroprotective effects of photobiomodulation in Parkinson's disease and propose that both types of treatment modality, when working together using both intracranial and extracranial devices, provide the best therapeutic option.


Subject(s)
Brain/radiation effects , Low-Level Light Therapy , Neuroprotective Agents/radiation effects , Parkinson Disease/therapy , Dopaminergic Neurons/radiation effects , Humans , Mitochondria
5.
Photobiomodul Photomed Laser Surg ; 37(11): 681-693, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31596658

ABSTRACT

Objective: The objective of this review is to consider the dual effects of microbiome and photobiomodulation (PBM) on human health and to suggest a relationship between these two as a novel mechanism. Background: PBM describes the use of low levels of visible or near-infrared (NIR) light to heal and stimulate tissue, and to relieve pain and inflammation. In recent years, PBM has been applied to the head as an investigative approach to treat diverse brain diseases such as stroke, traumatic brain injury (TBI), Alzheimer's and Parkinson's diseases, and psychiatric disorders. Also, in recent years, increasing attention has been paid to the total microbial population that colonizes the human body, chiefly in the gut and the mouth, called the microbiome. It is known that the composition and health of the gut microbiome affects many diseases related to metabolism, obesity, cardiovascular disorders, autoimmunity, and even brain disorders. Materials and methods: A literature search was conducted for published reports on the effect of light on the microbiome. Results: Recent work by our research group has demonstrated that PBM (red and NIR light) delivered to the abdomen in mice, can alter the gut microbiome in a potentially beneficial way. This has also now been demonstrated in human subjects. Conclusions: In consideration of the known effects of PBM on metabolomics, and the now demonstrated effects of PBM on the microbiome, as well as other effects of light on the microbiome, including modulating circadian rhythms, the present perspective introduces a new term "photobiomics" and looks forward to the application of PBM to influence the microbiome in humans. Some mechanisms by which this phenomenon might occur are considered.


Subject(s)
Low-Level Light Therapy , Microbiota/radiation effects , Animals , Dysbiosis/radiotherapy , Humans
6.
Neural Regen Res ; 14(12): 2086-2087, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31397343
7.
Sci Rep ; 9(1): 748, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679714

ABSTRACT

Millions of people take animal pictures during wildlife interactions, yet the impacts of photographer behaviour and photographic flashes on animals are poorly understood. We investigated the pathomorphological and behavioural impacts of photographer behaviour and photographic flashes on 14 benthic fish species that are important for scuba diving tourism and aquarium displays. We ran a field study to test effects of photography on fish behaviour, and two laboratory studies that tested effects of photographic flashes on seahorse behaviour, and ocular and retinal anatomy. Our study showed that effects of photographic flashes are negligible and do not have stronger impacts than those caused solely by human presence. Photographic flashes did not cause changes in gross ocular and retinal anatomy of seahorses and did not alter feeding success. Physical manipulation of animals by photographing scuba divers, however, elicited strong stress responses. This study provides important new information to help develop efficient management strategies that reduce environmental impacts of wildlife tourism.


Subject(s)
Animals, Wild/physiology , Conservation of Natural Resources , Fishes/physiology , Photography , Animals , Animals, Wild/anatomy & histology , Diving , Humans
8.
Sci Rep ; 4: 7590, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25534108

ABSTRACT

Dissipative two-level systems (TLS) have been a long-standing problem in glassy solids over the last fifty years, and have recently gained new relevance as sources of decoherence in quantum computing. Resonant absorption by TLSs in the dielectric poses a serious limitation to the performance of superconducting qubits; however, the microscopic nature of these systems has yet to be established. Based on first-principles calculations, we propose that hydrogen impurities in Al2O3 are the main source of TLS resonant absorption. Hydrogen is an ubiquitous impurity and can easily incorporate in Al2O3. We find that interstitial H in Al2O3 forms a hydrogen bond (O-H...O). At specific O-O distances, consistent with bond lengths found in amorphous Al2O3 or near Al2O3 surfaces or interfaces, the H atom feels a double well. Tunneling between two symmetric positions gives rise to resonant absorption in the range of 10 GHz, explaining the experimental observations. We also calculate the expected qubit-TLS coupling and find it to lie between 16 and 20 MHz, consistent with experimental measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...