Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 583(7814): 66-71, 2020 07.
Article in English | MEDLINE | ID: mdl-32612224

ABSTRACT

Dental enamel is a principal component of teeth1, and has evolved to bear large chewing forces, resist mechanical fatigue and withstand wear over decades2. Functional impairment and loss of dental enamel, caused by developmental defects or tooth decay (caries), affect health and quality of life, with associated costs to society3. Although the past decade has seen progress in our understanding of enamel formation (amelogenesis) and the functional properties of mature enamel, attempts to repair lesions in this material or to synthesize it in vitro have had limited success4-6. This is partly due to the highly hierarchical structure of enamel and additional complexities arising from chemical gradients7-9. Here we show, using atomic-scale quantitative imaging and correlative spectroscopies, that the nanoscale crystallites of hydroxylapatite (Ca5(PO4)3(OH)), which are the fundamental building blocks of enamel, comprise two nanometric layers enriched in magnesium flanking a core rich in sodium, fluoride and carbonate ions; this sandwich core is surrounded by a shell with lower concentration of substitutional defects. A mechanical model based on density functional theory calculations and X-ray diffraction data predicts that residual stresses arise because of the chemical gradients, in agreement with preferential dissolution of the crystallite core in acidic media. Furthermore, stresses may affect the mechanical resilience of enamel. The two additional layers of hierarchy suggest a possible new model for biological control over crystal growth during amelogenesis, and hint at implications for the preservation of biomarkers during tooth development.


Subject(s)
Amelogenesis , Dental Enamel/chemistry , Acids/chemistry , Calcium/chemistry , Carbonates/chemistry , Crystallization , Density Functional Theory , Dental Enamel/ultrastructure , Durapatite/chemistry , Fluorides/chemistry , Humans , Magnesium/chemistry , Microscopy, Electron, Scanning Transmission , Sodium/chemistry , Tomography , X-Ray Diffraction
2.
Nature ; 584(7819): E3, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32690940

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Nanotechnol ; 11(9): 791-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27294505

ABSTRACT

Three water adsorption-desorption mechanisms are common in inorganic materials: chemisorption, which can lead to the modification of the first coordination sphere; simple adsorption, which is reversible; and condensation, which is irreversible. Regardless of the sorption mechanism, all known materials exhibit an isotherm in which the quantity of water adsorbed increases with an increase in relative humidity. Here, we show that carbon-based rods can adsorb water at low humidity and spontaneously expel about half of the adsorbed water when the relative humidity exceeds a 50-80% threshold. The water expulsion is reversible, and is attributed to the interfacial forces between the confined rod surfaces. At wide rod spacings, a monolayer of water can form on the surface of the carbon-based rods, which subsequently leads to condensation in the confined space between adjacent rods. As the relative humidity increases, adjacent rods (confining surfaces) in the bundles are drawn closer together via capillary forces. At high relative humidity, and once the size of the confining surfaces has decreased to a critical length, a surface-induced evaporation phenomenon known as solvent cavitation occurs and water that had condensed inside the confined area is released as a vapour.

4.
Front Physiol ; 6: 57, 2015.
Article in English | MEDLINE | ID: mdl-25852562

ABSTRACT

Dental enamel has evolved to resist the most grueling conditions of mechanical stress, fatigue, and wear. Adding insult to injury, it is exposed to the frequently corrosive environment of the oral cavity. While its hierarchical structure is unrivaled in its mechanical resilience, heterogeneity in the distribution of magnesium ions and the presence of Mg-substituted amorphous calcium phosphate (Mg-ACP) as an intergranular phase have recently been shown to increase the susceptibility of mouse enamel to acid attack. Herein we investigate the distribution of two important constituents of enamel, residual organic matter and inorganic carbonate. We find that organics, carbonate, and possibly water show distinct distribution patterns in the mouse enamel crystallites, at simple grain boundaries, and in the amorphous interphase at multiple grain boundaries. This has implications for the resistance to acid corrosion, mechanical properties, and the mechanism by which enamel crystals grow during amelogenesis.

5.
Science ; 347(6223): 746-50, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25678658

ABSTRACT

Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging. We show­using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques­that in unpigmented rodent enamel, Mg(2+) is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.


Subject(s)
Calcium Phosphates/chemistry , Dental Enamel/chemistry , Dental Enamel/ultrastructure , Animals , Incisor/chemistry , Incisor/ultrastructure , Mice , Microscopy, Electron, Scanning , X-Ray Absorption Spectroscopy
6.
Angew Chem Int Ed Engl ; 53(43): 11506-9, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25196134

ABSTRACT

Metastable precursors are thought to play a major role in the ability of organisms to create mineralized tissues. Of particular interest are the hard and abrasion-resistant teeth formed by chitons, a class of rock-grazing mollusks. The formation of chiton teeth relies on the precipitation of metastable ferrihydrite (Fh) in an organic scaffold as a precursor to magnetite. In vitro synthesis of Fh under physiological conditions has been challenging. Using a combination of X-ray absorption and electron paramagnetic resonance spectroscopy, we show that, prior to Fh formation in the chiton tooth, iron ions are complexed by the organic matrix. In vitro experiments demonstrate that such complexes facilitate the formation of Fh under physiological conditions. These results indicate that acidic molecules may be integral to controlling Fh formation in the chiton tooth. This biological approach to polymorph selection is not limited to specialized proteins and can be expropriated using simple chemistry.


Subject(s)
Ferric Compounds/chemical synthesis , Polyplacophora/chemistry , Animals , Electron Spin Resonance Spectroscopy , X-Ray Absorption Spectroscopy , X-Ray Diffraction
7.
ACS Nano ; 6(12): 10667-75, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23176319

ABSTRACT

Nanocrystalline biological apatites constitute the mineral phase of vertebrate bone and teeth. Beyond their central importance to the mechanical function of our skeleton, their extraordinarily large surface acts as the most important ion exchanger for essential and toxic ions in our body. However, the nanoscale structural and chemical complexity of apatite-based mineralized tissues is a formidable challenge to quantitative imaging. For example, even energy-filtered electron microscopy is not suitable for detection of small quantities of low atomic number elements typical for biological materials. Herein we show that laser-pulsed atom probe tomography, a technique that combines subnanometer spatial resolution with unbiased chemical sensitivity, is uniquely suited to the task. Common apatite end members share a number of features, but can clearly be distinguished by their spectrometric fingerprint. This fingerprint and the formation of molecular ions during field evaporation can be explained based on the chemistry of the apatite channel ion. Using end members for reference, we are able to interpret the spectra of bone and dentin samples, and generate the first three-dimensional reconstruction of 1.2 × 10(7) atoms in a dentin sample. The fibrous nature of the collagenous organic matrix in dentin is clearly recognizable in the reconstruction. Surprisingly, some fibers show selectivity in binding for sodium ions over magnesium ions, implying that an additional, chemical level of hierarchy is necessary to describe dentin structure. Furthermore, segregation of inorganic ions or small organic molecules to homophase interfaces (grain boundaries) is not apparent. This has implications for the platelet model for apatite biominerals.


Subject(s)
Apatites/metabolism , Calcification, Physiologic , Femur/physiology , Tomography/methods , Animals , Dentin/metabolism , Dentin/physiology , Femur/metabolism , Imaging, Three-Dimensional , Mass Spectrometry , Rats , Volatilization
8.
Nature ; 469(7329): 194-7, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21228873

ABSTRACT

Biological organisms possess an unparalleled ability to control the structure and properties of mineralized tissues. They are able, for example, to guide the formation of smoothly curving single crystals or tough, lightweight, self-repairing skeletal elements. In many biominerals, an organic matrix interacts with the mineral as it forms, controls its morphology and polymorph, and is occluded during mineralization. The remarkable functional properties of the resulting composites-such as outstanding fracture toughness and wear resistance-can be attributed to buried organic-inorganic interfaces at multiple hierarchical levels. Analysing and controlling such interfaces at the nanometre length scale is critical also in emerging organic electronic and photovoltaic hybrid materials. However, elucidating the structural and chemical complexity of buried organic-inorganic interfaces presents a challenge to state-of-the-art imaging techniques. Here we show that pulsed-laser atom-probe tomography reveals three-dimensional chemical maps of organic fibres with a diameter of 5-10 nm in the surrounding nano-crystalline magnetite (Fe(3)O(4)) mineral in the tooth of a marine mollusc, the chiton Chaetopleura apiculata. Remarkably, most fibres co-localize with either sodium or magnesium. Furthermore, clustering of these cations in the fibre indicates a structural level of hierarchy previously undetected. Our results demonstrate that in the chiton tooth, individual organic fibres have different chemical compositions, and therefore probably different functional roles in controlling fibre formation and matrix-mineral interactions. Atom-probe tomography is able to detect this chemical/structural heterogeneity by virtue of its high three-dimensional spatial resolution and sensitivity across the periodic table. We anticipate that the quantitative analysis and visualization of nanometre-scale interfaces by laser-pulsed atom-probe tomography will contribute greatly to our understanding not only of biominerals (such as bone, dentine and enamel), but also of synthetic organic-inorganic composites.


Subject(s)
Polyplacophora , Tomography/methods , Tooth/chemistry , Algorithms , Animals , Binding Sites , Calcification, Physiologic , Chitin/chemistry , Chitin/metabolism , Ferrosoferric Oxide/chemistry , Magnesium/chemistry , Mass Spectrometry , Nanotechnology , Polyplacophora/anatomy & histology , Polyplacophora/ultrastructure , Sodium/chemistry , Tooth/anatomy & histology , Tooth/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...