Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
medRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562876

ABSTRACT

Background: Most seasonally circulating enteroviruses result in asymptomatic or mildly symptomatic infections. In rare cases, however, infection with some subtypes can result in paralysis or death. Of the 300 subtypes known, only poliovirus is reportable, limiting our understanding of the distribution of other enteroviruses that can cause clinical disease. Objective: The overarching objectives of this study were to: 1) describe the distribution of enteroviruses in Arizona during the late summer and fall of 2022, the time of year when they are thought to be most abundant, and 2) demonstrate the utility of viral pan-assay approaches for semi-agnostic discovery that can be followed up by more targeted assays and phylogenomics. Methods: This study utilizes pooled nasal samples collected from school-aged children and long-term care facility residents, and wastewater from multiple locations in Arizona during July-October of 2022. We used PCR to amplify and sequence a region common to all enteroviruses, followed by species-level bioinformatic characterization using the QIIME 2 platform. For Enterovirus-D68 (EV-D68), detection was carried out using RT-qPCR, followed by confirmation using near-complete whole EV-D68 genome sequencing using a newly designed tiled amplicon approach. Results: In the late summer and early fall of 2022, multiple enterovirus species were identified in Arizona wastewater, with Coxsackievirus A6, EV-D68, and Coxsackievirus A19 composing 86% of the characterized reads sequenced. While EV-D68 was not identified in pooled human nasal samples, and the only reported acute flaccid myelitis case in Arizona did not test positive for the virus, an in-depth analysis of EV-D68 in wastewater revealed that the virus was circulating from August through mid-October. A phylogenetic analysis on this relatively limited dataset revealed just a few importations into the state, with a single clade indicating local circulation. Significance: This study further supports the utility of wastewater-based epidemiology to identify potential public health threats. Our further investigations into EV-D68 shows how these data might help inform healthcare diagnoses for children presenting with concerning neurological symptoms.

2.
Chem Biol ; 22(11): 1442-1452, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26548614

ABSTRACT

The practical realization of disease modulation by catalytic degradation of a therapeutic target protein suffers from the difficulty to identify candidate proteases, or to engineer their specificity. We identified 23 measurable, specific, and new protease activities using combinatorial screening of 27 human proteases against 24 therapeutic protein targets. We investigate the cleavage of monocyte chemoattractant protein 1, interleukin-6 (IL-6), and IL-13 by matrix metalloproteinases (MMPs) and serine proteases, and demonstrate that cleavage of IL-13 leads to potent inhibition of its biological activity in vitro. MMP-8 degraded human IL-13 most efficiently in vitro and ex vivo in human IL-13 transgenic mouse bronchoalveolar lavage. Hence, MMP-8 is a therapeutic protease lead against IL-13 for inflammatory conditions whereby reported genetic and genomics data suggest an involvement of MMP-8. This work describes the first exploitation of human enzyme promiscuity for therapeutic applications, and reveals both starting points for protease-based therapies and potential new regulatory networks in inflammatory disease.


Subject(s)
Interleukin-13/metabolism , Matrix Metalloproteinases/metabolism , Animals , Catalytic Domain , Cell Line , Chemokine CCL2/metabolism , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dermatitis, Atopic/therapy , Electrophoresis, Polyacrylamide Gel , Humans , Interleukin-6/metabolism , Kinetics , Matrix Metalloproteinase 8/chemistry , Matrix Metalloproteinase 8/genetics , Matrix Metalloproteinase 8/metabolism , Matrix Metalloproteinases/chemistry , Mice , Mice, Transgenic , Protein Engineering , Proteolysis , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
J Biol Chem ; 288(5): 3419-27, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23239876

ABSTRACT

The methyl-cytosine binding domain 2 (MBD2)-nucleosome remodeling and deacetylase (NuRD) complex recognizes methylated DNA and silences expression of associated genes through histone deacetylase and nucleosome remodeling functions. Our previous structural work demonstrated that a coiled-coil interaction between MBD2 and GATA zinc finger domain containing 2A (GATAD2A/p66α) proteins recruits the chromodomain helicase DNA-binding protein (CHD4/Mi2ß) to the NuRD complex and is necessary for MBD2-mediated DNA methylation-dependent gene silencing in vivo (Gnanapragasam, M. N., Scarsdale, J. N., Amaya, M. L., Webb, H. D., Desai, M. A., Walavalkar, N. M., Wang, S. Z., Zu Zhu, S., Ginder, G. D., and Williams, D. C., Jr. (2011) p66α-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex. Proc. Natl. Acad. Sci. U.S.A. 108, 7487-7492). The p66α-MBD2 interaction differs from most coiled-coils studied to date by forming an anti-parallel heterodimeric complex between two peptides that are largely monomeric in isolation. To further characterize unique features of this complex that drive heterodimeric specificity and high affinity binding, we carried out biophysical analyses of MBD2 and the related homologues MBD3, MBD3-like protein 1 (MBD3L1), and MBD3-like protein 2 (MBD3L2) as well as specific mutations that modify charge-charge interactions and helical propensity of the coiled-coil domains. Analytical ultracentrifugation analyses show that the individual peptides remain monomeric in isolation even at 300 µM in concentration for MBD2. Circular dichroism analyses demonstrate a direct correlation between helical content of the coiled-coil domains in isolation and binding affinity for p66α. Furthermore, complementary electrostatic surface potentials and inherent helical content of each peptide are necessary to maintain high-affinity association. These factors lead to a binding affinity hierarchy of p66α for the different MBD2 homologues (MBD2 ≈ MBD3 > MBD3L1 ≈ MBD3L2) and suggest a hierarchical regulatory model in tissue and life cycle stage-specific silencing by NuRD complexes.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Protein Multimerization , Repressor Proteins/metabolism , Amino Acid Sequence , Conserved Sequence , Humans , Hydrophobic and Hydrophilic Interactions , Ions , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Binding , Protein Denaturation , Protein Structure, Secondary , Protein Structure, Tertiary , Repressor Proteins/chemistry , Sequence Homology, Amino Acid , Static Electricity , Temperature , Zinc Fingers
4.
J Mol Biol ; 396(1): 166-77, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-19945466

ABSTRACT

A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) ligand superfamily and has a proliferative effect on both normal and tumor cells. The TNF family receptors (B-cell maturation antigen (BCMA), transmembrane activator and CAML-interactor (TACI), and BAFF receptor-3 (BR3)) for APRIL and the closely related ligand, B-cell activating factor of the TNF family (BAFF), bind these ligands through a highly conserved six residue DXL motif ((F/Y/W)-D-X-L-(V/T)-(R/G)). Panning peptide phage display libraries led to the identification of several novel classes of APRIL-binding peptides, which could be grouped by their common sequence motifs. Interestingly, only one of these ten classes consisted of peptides containing the DXL motif. Nevertheless, all classes of peptides prevented APRIL, but not BAFF, from binding BCMA, their shared receptor. Synthetic peptides based on selected sequences inhibited APRIL binding to BCMA with IC(50) values of 0.49-27 microM. An X-ray crystallographic structure of APRIL bound to one of the phage-derived peptides showed that the peptide, lacking the DXL motif, was nevertheless bound in the DXL pocket on APRIL. Our results demonstrate that even though a focused, highly conserved motif is required for APRIL-receptor interaction, remarkably, many novel and distinct classes of peptides are also capable of binding APRIL at the ligand receptor interface.


Subject(s)
Peptide Library , Peptides/classification , Peptides/isolation & purification , Tumor Necrosis Factor Ligand Superfamily Member 13/antagonists & inhibitors , Alanine/metabolism , Amino Acid Sequence , Animals , B-Cell Maturation Antigen/chemistry , B-Cell Maturation Antigen/metabolism , Immobilized Proteins/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Mutagenesis/genetics , Peptides/chemistry , Protein Binding , Protein Structure, Secondary , Solubility , Tumor Necrosis Factor Ligand Superfamily Member 13/chemistry , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
5.
Cell ; 134(4): 668-78, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18724939

ABSTRACT

Posttranslational modification of proteins with polyubiquitin occurs in diverse signaling pathways and is tightly regulated to ensure cellular homeostasis. Studies employing ubiquitin mutants suggest that the fate of polyubiquitinated proteins is determined by which lysine within ubiquitin is linked to the C terminus of an adjacent ubiquitin. We have developed linkage-specific antibodies that recognize polyubiquitin chains joined through lysine 63 (K63) or 48 (K48). A cocrystal structure of an anti-K63 linkage Fab bound to K63-linked diubiquitin provides insight into the molecular basis for specificity. We use these antibodies to demonstrate that RIP1, which is essential for tumor necrosis factor-induced NF-kappaB activation, and IRAK1, which participates in signaling by interleukin-1beta and Toll-like receptors, both undergo polyubiquitin editing in stimulated cells. Both kinase adaptors initially acquire K63-linked polyubiquitin, while at later times K48-linked polyubiquitin targets them for proteasomal degradation. Polyubiquitin editing may therefore be a general mechanism for attenuating innate immune signaling.


Subject(s)
Antibodies/metabolism , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , Ubiquitin/metabolism , Animals , Cell Line , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Mass Spectrometry , Mice , Mice, Inbred C57BL , Nuclear Pore Complex Proteins/chemistry , Peptide Library , RNA-Binding Proteins/chemistry , Saccharomyces cerevisiae , Schizosaccharomyces , Ubiquitin/chemistry , Ubiquitination
6.
Blood ; 108(9): 3103-11, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16840730

ABSTRACT

BR3, which is expressed on all mature B cells, is a specific receptor for the B-cell survival and maturation factor BAFF (B-cell-activating factor belonging to the tumor necrosis factor [TNF] family). In order to investigate the consequences of targeting BR3 in murine models and to assess the potential of BR3 antibodies as human therapeutics, synthetic antibody phage libraries were employed to identify BAFF-blocking antibodies cross-reactive to murine and human BR3, which share 52% identity in their extracellular domains. We found an antibody, CB1, which exhibits muM affinity for murine BR3 and very weak affinity for the human receptor. CB3s, an affinity-matured variant of CB1, has sub-nM affinity for BR3 from both species. Alanine scanning and crystallographic structural analysis of the CB3s/BR3 complex reveal that CB3s mimics BAFF by interacting with a similar region of the BR3 surface. Despite this similarity in binding epitopes, CB1 variants antagonize BAFF-dependent human B-cell proliferation in vitro and are effective at reducing murine B-cell populations in vivo, showing significant promise as therapeutics for human B-cell-mediated diseases.


Subject(s)
B-Cell Activating Factor/immunology , B-Cell Activation Factor Receptor/genetics , B-Cell Activation Factor Receptor/immunology , B-Lymphocytes/immunology , Amino Acid Sequence , Animals , Antibodies/immunology , Antibodies/therapeutic use , B-Cell Activating Factor/genetics , B-Cell Activation Factor Receptor/chemistry , Binding Sites , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/immunology , Lymphocyte Activation , Mice , Models, Molecular , Molecular Sequence Data , Mutagenesis , Protein Conformation , Sequence Alignment , Sequence Homology, Amino Acid
7.
J Biol Chem ; 280(8): 7218-27, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15542592

ABSTRACT

TACI is a member of the tumor necrosis factor receptor superfamily and serves as a key regulator of B cell function. TACI binds two ligands, APRIL and BAFF, with high affinity and contains two cysteine-rich domains (CRDs) in its extracellular region; in contrast, BCMA and BR3, the other known high affinity receptors for APRIL and BAFF, respectively, contain only a single or partial CRD. However, another form of TACI exists wherein the N-terminal CRD is removed by alternative splicing. We find that this shorter form is capable of ligand-induced cell signaling and that the second CRD alone (TACI_d2) contains full affinity for both ligands. Furthermore, we report the solution structure and alanine-scanning mutagenesis of TACI_d2 along with co-crystal structures of APRIL.TACI_d2 and APRIL.BCMA complexes that together reveal the mechanism by which TACI engages high affinity ligand binding through a single CRD, and we highlight sources of ligand-receptor specificity within the APRIL/BAFF system.


Subject(s)
Cysteine , Membrane Proteins/chemistry , Receptors, Tumor Necrosis Factor/chemistry , Tumor Necrosis Factor-alpha/chemistry , Alternative Splicing , Animals , B-Cell Activating Factor , B-Cell Maturation Antigen , Crystallization , Crystallography, X-Ray , Humans , Ligands , Membrane Proteins/genetics , Mice , Mutagenesis , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Tertiary , Receptors, Tumor Necrosis Factor/genetics , Signal Transduction , Solutions , Transmembrane Activator and CAML Interactor Protein , Tumor Necrosis Factor Ligand Superfamily Member 13
8.
J Biol Chem ; 279(16): 16727-35, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-14764606

ABSTRACT

B cell maturation antigen (BCMA) is a tumor necrosis factor receptor family member whose physiological role remains unclear. BCMA has been implicated as a receptor for both a proliferation-inducing ligand (APRIL) and B cell-activating factor (BAFF), tumor necrosis factor ligands that bind to multiple tumor necrosis factor receptor and have been reported to play a role in autoimmune disease and cancer. The results presented herein provide a dual perspective analysis of BCMA binding to both APRIL and BAFF. First, we characterized the binding affinity of monomeric BCMA for its ligands; BAFF binding affinity (IC50 = 8 +/- 5 microm) is about 1000-fold reduced compared with the high affinity interaction of APRIL (IC50 = 11 +/- 3 nm). Second, shotgun alanine scanning of BCMA was used to map critical residues for either APRIL or BAFF binding. In addition to a previously described "DXL" motif (Gordon, N. C., Pan, B., Hymowitz, S. G., Yin, J., Kelley, R. F., Cochran, A. G., Yan, M., Dixit, V. M., Fairbrother, W. J., and Starovasnik, M. A. (2003) Biochemistry 42, 5977-5983), the alanine scanning results predicted four amino acid positions in BCMA (Tyr13, Ile22, Gln25, and Arg27) that could impart ligand specificity. Substitution of Tyr13 was tolerated for BAFF binding but not APRIL binding. Arg27 was required for high affinity binding to APRIL, whereas substitutions of this residue had minimal effect on affinity for BAFF. Further phage display experiments suggested the single mutations of I22K, Q25D, and R27Y as providing the greatest difference in APRIL versus BAFF binding affinity. Incorporation of the Q25D and R27Y substitutions into BCMA produced a dual specificity variant, since it has comparable binding affinity for both APRIL and BAFF, IC50 = 350 and 700 nm, respectively. Binding of the I22K mutant of monomeric BCMA to BAFF was undetectable (IC50 > 100 microm), but affinity for binding to APRIL was similar to wild-type BCMA. Based on these results, a BCMA-Fc fusion with the single I22K mutation was produced that binds APRIL, IC50 = 12 nm, and has no measurable affinity for BAFF. These results suggest that APRIL is the preferred ligand for BCMA and show that specificity can be further modified through amino acid substitutions.


Subject(s)
Membrane Proteins/metabolism , Protein Engineering , Receptors, Tumor Necrosis Factor , Tumor Necrosis Factor-alpha/metabolism , Amino Acid Substitution , B-Cell Activating Factor , B-Cell Maturation Antigen , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Binding Sites/genetics , Humans , Ligands , Membrane Proteins/immunology , Mutation , Peptide Mapping , Protein Binding , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/immunology , Receptors, Tumor Necrosis Factor/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13 , Tumor Necrosis Factor-alpha/immunology
9.
Biochemistry ; 42(20): 5977-83, 2003 May 27.
Article in English | MEDLINE | ID: mdl-12755599

ABSTRACT

BAFF/BLyS, a member of the tumor necrosis family (TNF) superfamily of ligands, is a crucial survival factor for B cells. BAFF binds three receptors, TACI, BCMA, and BR3, with signaling through BR3 being essential for promoting B cell function. Typical TNF receptor (TNFR) family members bind their cognate ligands through interactions with two cysteine-rich domains (CRDs). However, the extracellular domain (ECD) of BR3 consists of only a partial CRD, with cysteine spacing distinct from other modules described previously. Herein, we report the solution structure of the BR3 ECD. A core region of only 19 residues adopts a stable structure in solution. The BR3 fold is analogous to the first half of a canonical TNFR CRD but is stabilized by an additional noncanonical disulfide bond. BAFF-binding determinants were identified by shotgun alanine-scanning mutagenesis of the BR3 ECD expressed on phage. Several of the key BAFF-binding residues are presented from a beta-turn that we have shown previously to be sufficient for ligand binding when transferred to a structured beta-hairpin scaffold [Kayagaki, N., Yan, M., Seshasayee, D., Wang, H., Lee, W., French, D. M., Grewal, I. S., Cochran, A. G., Gordon, N. C., Yin, J., Starovasnik, M. A, and Dixit, V. M. (2002) Immunity 10, 515-524]. Outside of the turn, mutagenesis identifies additional hydrophobic contacts that enhance the BAFF-BR3 interaction. The crystal structure of the minimal hairpin peptide, bhpBR3, in complex with BAFF reveals intimate packing of the six-residue BR3 turn into a cavity on the ligand surface. Thus, BR3 binds BAFF through a highly focused interaction site, unprecedented in the TNFR family.


Subject(s)
Membrane Proteins/chemistry , Receptors, Tumor Necrosis Factor/chemistry , Tumor Necrosis Factor-alpha/chemistry , Amino Acid Sequence , B-Cell Activating Factor , B-Cell Activation Factor Receptor , Binding Sites , Cysteine/chemistry , Humans , In Vitro Techniques , Ligands , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solutions , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
10.
Immunity ; 17(4): 515-24, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12387744

ABSTRACT

The TNF-like ligand BAFF/BLyS is a potent survival factor for B cells. It binds three receptors: TACI, BCMA, and BR3. We show that BR3 signaling promotes processing of the transcription factor NF-kappaB2/p100 to p52. NF-kappaB2/p100 cleavage was abrogated in B cells from A/WySnJ mice possessing a mutant BR3 gene, but not in TACI or BCMA null B cells. Furthermore, wild-type mice injected with BAFF-neutralizing BR3-Fc protein showed reduced basal NF-kappaB2 activation. BR3-Fc treatment of NZB/WF1 mice, which develop a fatal lupus-like syndrome, inhibited NF-kappaB2 processing and attenuated the disease process. Since inhibiting the BR3-BAFF interaction has therapeutic ramifications, the ligand binding interface of BR3 was investigated and found to reside within a 26 residue core domain. When stabilized within a structured beta-hairpin peptide, six of these residues were sufficient to confer binding to BAFF.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Membrane Proteins/metabolism , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Amino Acid Sequence , Animals , Apoptosis , B-Cell Activating Factor , B-Cell Activation Factor Receptor , B-Lymphocytes/cytology , Binding Sites , Cell Line , Female , Ligands , Lupus Erythematosus, Systemic/immunology , Mice , Mice, Inbred A , Mice, Inbred C57BL , Mice, Inbred NZB , Mice, Knockout , Mice, Mutant Strains , Models, Molecular , Molecular Sequence Data , NF-kappa B p52 Subunit , Protein Processing, Post-Translational , Protein Structure, Tertiary , Receptors, Tumor Necrosis Factor/chemistry , Receptors, Tumor Necrosis Factor/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...